Chondrogenic differentiation of human bone marrow‐derived mesenchymal stromal cells in a three‐dimensional environment

Cell therapy combined with biomaterial scaffolds is used to treat cartilage defects. We hypothesized that chondrogenic differentiation bone marrow‐derived mesenchymal stem cells (BM‐MSCs) in three‐dimensional biomaterial scaffolds would initiate cartilaginous matrix deposition and prepare the constr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular physiology 2020-04, Vol.235 (4), p.3497-3507
Hauptverfasser: Salonius, Eve, Kontturi, Leena, Laitinen, Anita, Haaparanta, Anne‐Marie, Korhonen, Matti, Nystedt, Johanna, Kiviranta, Ilkka, Muhonen, Virpi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3507
container_issue 4
container_start_page 3497
container_title Journal of cellular physiology
container_volume 235
creator Salonius, Eve
Kontturi, Leena
Laitinen, Anita
Haaparanta, Anne‐Marie
Korhonen, Matti
Nystedt, Johanna
Kiviranta, Ilkka
Muhonen, Virpi
description Cell therapy combined with biomaterial scaffolds is used to treat cartilage defects. We hypothesized that chondrogenic differentiation bone marrow‐derived mesenchymal stem cells (BM‐MSCs) in three‐dimensional biomaterial scaffolds would initiate cartilaginous matrix deposition and prepare the construct for cartilage regeneration in situ. The chondrogenic capability of human BM‐MSCs was first verified in a pellet culture. The BM‐MSCs were then either seeded onto a composite scaffold rhCo‐PLA combining polylactide and collagen type II (C2) or type III (C3), or commercial collagen type I/III membrane (CG). The BM‐MSCs were either cultured in a proliferation medium or chondrogenic culture medium. Adult human chondrocytes (ACs) served as controls. After 3, 14, and 28 days, the constructs were analyzed with quantitative polymerase chain reaction and confocal microscopy and sulfated glycosaminoglycans (GAGs) were measured. The differentiated BM‐MSCs entered a hypertrophic state by Day 14 of culture. The ACs showed dedifferentiation with no expression of chondrogenic genes and low amount of GAG. The CG membrane induced the highest expression levels of hypertrophic genes. The two different collagen types in composite scaffolds yielded similar results. Regardless of the biomaterial scaffold, culturing BM‐MSCs in chondrogenic differentiation medium resulted in chondrocyte hypertrophy. Thus, caution for cell fate is required when designing cell‐biomaterial constructs for cartilage regeneration. The purpose of the study was to investigate, whether chondrogenic predifferentiation of bone marrow‐derived mesenchymal stem cells (BM‐MSCs) in novel three‐dimensional biomaterial scaffolds would initiate cartilaginous matrix deposition and whether the type of collagen used in the scaffolds would affect the results. The two different collagen types in composite scaffolds yielded similar results. Regardless of the biomaterial scaffold, culturing BM‐MSCs in chondrogenic differentiation medium resulted in chondrocyte hypertrophy.
doi_str_mv 10.1002/jcp.29238
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2297126335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2297126335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3888-ae6efc9ac5b9933b6c165e362a6d92343001fb71cb71289f206a9bd47a9ac18d3</originalsourceid><addsrcrecordid>eNp1kctOwzAQRS0EgvJY8APIEhtYhPrRuPESVTyFBAtYR44zoa4Su9hJUVnxCXwjX4JDCwskFqORZs5cXfsidEjJGSWEDWd6fsYk49kGGlAix8lIpGwTDeKOJjId0R20G8KMECIl59toh9M0ZULSAXqbTJ0tvXsGazQuTVWBB9sa1RpnsavwtGuUxYWzgBvlvXv9fP8owZsFlLiBAFZPl42qcWi967uGug7YWKxwO_UAPW4asCHqxTXYhfHOxkG7j7YqVQc4WPc99HR58Ti5Tu7ur24m53eJ5lmWJQoEVFoqnRa9-0JoKlLggilRxjePOCG0KsZUx2KZrBgRShblaKziDc1KvodOVrpz7146CG3emNDbVBZcF3LGZLwUnKcRPf6Dzlzno-9I8QgIJrOeOl1R2rsQPFT53Jv4OcuckrwPJI-B5N-BRPZordgVDZS_5E8CERiugFdTw_J_pfx28rCS_ALMJZi-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2333562985</pqid></control><display><type>article</type><title>Chondrogenic differentiation of human bone marrow‐derived mesenchymal stromal cells in a three‐dimensional environment</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Salonius, Eve ; Kontturi, Leena ; Laitinen, Anita ; Haaparanta, Anne‐Marie ; Korhonen, Matti ; Nystedt, Johanna ; Kiviranta, Ilkka ; Muhonen, Virpi</creator><creatorcontrib>Salonius, Eve ; Kontturi, Leena ; Laitinen, Anita ; Haaparanta, Anne‐Marie ; Korhonen, Matti ; Nystedt, Johanna ; Kiviranta, Ilkka ; Muhonen, Virpi</creatorcontrib><description>Cell therapy combined with biomaterial scaffolds is used to treat cartilage defects. We hypothesized that chondrogenic differentiation bone marrow‐derived mesenchymal stem cells (BM‐MSCs) in three‐dimensional biomaterial scaffolds would initiate cartilaginous matrix deposition and prepare the construct for cartilage regeneration in situ. The chondrogenic capability of human BM‐MSCs was first verified in a pellet culture. The BM‐MSCs were then either seeded onto a composite scaffold rhCo‐PLA combining polylactide and collagen type II (C2) or type III (C3), or commercial collagen type I/III membrane (CG). The BM‐MSCs were either cultured in a proliferation medium or chondrogenic culture medium. Adult human chondrocytes (ACs) served as controls. After 3, 14, and 28 days, the constructs were analyzed with quantitative polymerase chain reaction and confocal microscopy and sulfated glycosaminoglycans (GAGs) were measured. The differentiated BM‐MSCs entered a hypertrophic state by Day 14 of culture. The ACs showed dedifferentiation with no expression of chondrogenic genes and low amount of GAG. The CG membrane induced the highest expression levels of hypertrophic genes. The two different collagen types in composite scaffolds yielded similar results. Regardless of the biomaterial scaffold, culturing BM‐MSCs in chondrogenic differentiation medium resulted in chondrocyte hypertrophy. Thus, caution for cell fate is required when designing cell‐biomaterial constructs for cartilage regeneration. The purpose of the study was to investigate, whether chondrogenic predifferentiation of bone marrow‐derived mesenchymal stem cells (BM‐MSCs) in novel three‐dimensional biomaterial scaffolds would initiate cartilaginous matrix deposition and whether the type of collagen used in the scaffolds would affect the results. The two different collagen types in composite scaffolds yielded similar results. Regardless of the biomaterial scaffold, culturing BM‐MSCs in chondrogenic differentiation medium resulted in chondrocyte hypertrophy.</description><identifier>ISSN: 0021-9541</identifier><identifier>EISSN: 1097-4652</identifier><identifier>DOI: 10.1002/jcp.29238</identifier><identifier>PMID: 31552691</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>biomaterial ; Biomaterials ; Biomedical materials ; Bone biomaterials ; Bone marrow ; Bone Marrow Cells - cytology ; Bone Marrow Cells - metabolism ; Cartilage ; Cartilage, Articular - growth &amp; development ; Cartilage, Articular - metabolism ; Cell culture ; Cell Differentiation - genetics ; Cell fate ; Cell Proliferation - genetics ; Cell therapy ; Chondrocytes ; Chondrocytes - cytology ; Chondrocytes - metabolism ; Chondrogenesis ; Chondrogenesis - genetics ; Collagen ; Collagen (type I) ; Collagen (type II) ; Collagen (type III) ; Collagen - genetics ; Collagen - metabolism ; Confocal microscopy ; Differentiation ; Eutrophication ; Extracellular Matrix - genetics ; Gene expression ; Genes ; Glycosaminoglycans ; Glycosaminoglycans - genetics ; Glycosaminoglycans - metabolism ; Humans ; Hypertrophy ; Membranes ; Mesenchymal stem cells ; Mesenchymal Stem Cells - cytology ; Mesenchymal Stem Cells - metabolism ; Mesenchyme ; MSC ; Polylactic acid ; Polymerase chain reaction ; Regeneration ; Regeneration - genetics ; scaffold ; Scaffolds ; Stem cells ; Stromal cells</subject><ispartof>Journal of cellular physiology, 2020-04, Vol.235 (4), p.3497-3507</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><rights>2020 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3888-ae6efc9ac5b9933b6c165e362a6d92343001fb71cb71289f206a9bd47a9ac18d3</citedby><cites>FETCH-LOGICAL-c3888-ae6efc9ac5b9933b6c165e362a6d92343001fb71cb71289f206a9bd47a9ac18d3</cites><orcidid>0000-0003-1988-2800</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcp.29238$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcp.29238$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31552691$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Salonius, Eve</creatorcontrib><creatorcontrib>Kontturi, Leena</creatorcontrib><creatorcontrib>Laitinen, Anita</creatorcontrib><creatorcontrib>Haaparanta, Anne‐Marie</creatorcontrib><creatorcontrib>Korhonen, Matti</creatorcontrib><creatorcontrib>Nystedt, Johanna</creatorcontrib><creatorcontrib>Kiviranta, Ilkka</creatorcontrib><creatorcontrib>Muhonen, Virpi</creatorcontrib><title>Chondrogenic differentiation of human bone marrow‐derived mesenchymal stromal cells in a three‐dimensional environment</title><title>Journal of cellular physiology</title><addtitle>J Cell Physiol</addtitle><description>Cell therapy combined with biomaterial scaffolds is used to treat cartilage defects. We hypothesized that chondrogenic differentiation bone marrow‐derived mesenchymal stem cells (BM‐MSCs) in three‐dimensional biomaterial scaffolds would initiate cartilaginous matrix deposition and prepare the construct for cartilage regeneration in situ. The chondrogenic capability of human BM‐MSCs was first verified in a pellet culture. The BM‐MSCs were then either seeded onto a composite scaffold rhCo‐PLA combining polylactide and collagen type II (C2) or type III (C3), or commercial collagen type I/III membrane (CG). The BM‐MSCs were either cultured in a proliferation medium or chondrogenic culture medium. Adult human chondrocytes (ACs) served as controls. After 3, 14, and 28 days, the constructs were analyzed with quantitative polymerase chain reaction and confocal microscopy and sulfated glycosaminoglycans (GAGs) were measured. The differentiated BM‐MSCs entered a hypertrophic state by Day 14 of culture. The ACs showed dedifferentiation with no expression of chondrogenic genes and low amount of GAG. The CG membrane induced the highest expression levels of hypertrophic genes. The two different collagen types in composite scaffolds yielded similar results. Regardless of the biomaterial scaffold, culturing BM‐MSCs in chondrogenic differentiation medium resulted in chondrocyte hypertrophy. Thus, caution for cell fate is required when designing cell‐biomaterial constructs for cartilage regeneration. The purpose of the study was to investigate, whether chondrogenic predifferentiation of bone marrow‐derived mesenchymal stem cells (BM‐MSCs) in novel three‐dimensional biomaterial scaffolds would initiate cartilaginous matrix deposition and whether the type of collagen used in the scaffolds would affect the results. The two different collagen types in composite scaffolds yielded similar results. Regardless of the biomaterial scaffold, culturing BM‐MSCs in chondrogenic differentiation medium resulted in chondrocyte hypertrophy.</description><subject>biomaterial</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Bone biomaterials</subject><subject>Bone marrow</subject><subject>Bone Marrow Cells - cytology</subject><subject>Bone Marrow Cells - metabolism</subject><subject>Cartilage</subject><subject>Cartilage, Articular - growth &amp; development</subject><subject>Cartilage, Articular - metabolism</subject><subject>Cell culture</subject><subject>Cell Differentiation - genetics</subject><subject>Cell fate</subject><subject>Cell Proliferation - genetics</subject><subject>Cell therapy</subject><subject>Chondrocytes</subject><subject>Chondrocytes - cytology</subject><subject>Chondrocytes - metabolism</subject><subject>Chondrogenesis</subject><subject>Chondrogenesis - genetics</subject><subject>Collagen</subject><subject>Collagen (type I)</subject><subject>Collagen (type II)</subject><subject>Collagen (type III)</subject><subject>Collagen - genetics</subject><subject>Collagen - metabolism</subject><subject>Confocal microscopy</subject><subject>Differentiation</subject><subject>Eutrophication</subject><subject>Extracellular Matrix - genetics</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Glycosaminoglycans</subject><subject>Glycosaminoglycans - genetics</subject><subject>Glycosaminoglycans - metabolism</subject><subject>Humans</subject><subject>Hypertrophy</subject><subject>Membranes</subject><subject>Mesenchymal stem cells</subject><subject>Mesenchymal Stem Cells - cytology</subject><subject>Mesenchymal Stem Cells - metabolism</subject><subject>Mesenchyme</subject><subject>MSC</subject><subject>Polylactic acid</subject><subject>Polymerase chain reaction</subject><subject>Regeneration</subject><subject>Regeneration - genetics</subject><subject>scaffold</subject><subject>Scaffolds</subject><subject>Stem cells</subject><subject>Stromal cells</subject><issn>0021-9541</issn><issn>1097-4652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kctOwzAQRS0EgvJY8APIEhtYhPrRuPESVTyFBAtYR44zoa4Su9hJUVnxCXwjX4JDCwskFqORZs5cXfsidEjJGSWEDWd6fsYk49kGGlAix8lIpGwTDeKOJjId0R20G8KMECIl59toh9M0ZULSAXqbTJ0tvXsGazQuTVWBB9sa1RpnsavwtGuUxYWzgBvlvXv9fP8owZsFlLiBAFZPl42qcWi967uGug7YWKxwO_UAPW4asCHqxTXYhfHOxkG7j7YqVQc4WPc99HR58Ti5Tu7ur24m53eJ5lmWJQoEVFoqnRa9-0JoKlLggilRxjePOCG0KsZUx2KZrBgRShblaKziDc1KvodOVrpz7146CG3emNDbVBZcF3LGZLwUnKcRPf6Dzlzno-9I8QgIJrOeOl1R2rsQPFT53Jv4OcuckrwPJI-B5N-BRPZordgVDZS_5E8CERiugFdTw_J_pfx28rCS_ALMJZi-</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Salonius, Eve</creator><creator>Kontturi, Leena</creator><creator>Laitinen, Anita</creator><creator>Haaparanta, Anne‐Marie</creator><creator>Korhonen, Matti</creator><creator>Nystedt, Johanna</creator><creator>Kiviranta, Ilkka</creator><creator>Muhonen, Virpi</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1988-2800</orcidid></search><sort><creationdate>202004</creationdate><title>Chondrogenic differentiation of human bone marrow‐derived mesenchymal stromal cells in a three‐dimensional environment</title><author>Salonius, Eve ; Kontturi, Leena ; Laitinen, Anita ; Haaparanta, Anne‐Marie ; Korhonen, Matti ; Nystedt, Johanna ; Kiviranta, Ilkka ; Muhonen, Virpi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3888-ae6efc9ac5b9933b6c165e362a6d92343001fb71cb71289f206a9bd47a9ac18d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>biomaterial</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Bone biomaterials</topic><topic>Bone marrow</topic><topic>Bone Marrow Cells - cytology</topic><topic>Bone Marrow Cells - metabolism</topic><topic>Cartilage</topic><topic>Cartilage, Articular - growth &amp; development</topic><topic>Cartilage, Articular - metabolism</topic><topic>Cell culture</topic><topic>Cell Differentiation - genetics</topic><topic>Cell fate</topic><topic>Cell Proliferation - genetics</topic><topic>Cell therapy</topic><topic>Chondrocytes</topic><topic>Chondrocytes - cytology</topic><topic>Chondrocytes - metabolism</topic><topic>Chondrogenesis</topic><topic>Chondrogenesis - genetics</topic><topic>Collagen</topic><topic>Collagen (type I)</topic><topic>Collagen (type II)</topic><topic>Collagen (type III)</topic><topic>Collagen - genetics</topic><topic>Collagen - metabolism</topic><topic>Confocal microscopy</topic><topic>Differentiation</topic><topic>Eutrophication</topic><topic>Extracellular Matrix - genetics</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Glycosaminoglycans</topic><topic>Glycosaminoglycans - genetics</topic><topic>Glycosaminoglycans - metabolism</topic><topic>Humans</topic><topic>Hypertrophy</topic><topic>Membranes</topic><topic>Mesenchymal stem cells</topic><topic>Mesenchymal Stem Cells - cytology</topic><topic>Mesenchymal Stem Cells - metabolism</topic><topic>Mesenchyme</topic><topic>MSC</topic><topic>Polylactic acid</topic><topic>Polymerase chain reaction</topic><topic>Regeneration</topic><topic>Regeneration - genetics</topic><topic>scaffold</topic><topic>Scaffolds</topic><topic>Stem cells</topic><topic>Stromal cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salonius, Eve</creatorcontrib><creatorcontrib>Kontturi, Leena</creatorcontrib><creatorcontrib>Laitinen, Anita</creatorcontrib><creatorcontrib>Haaparanta, Anne‐Marie</creatorcontrib><creatorcontrib>Korhonen, Matti</creatorcontrib><creatorcontrib>Nystedt, Johanna</creatorcontrib><creatorcontrib>Kiviranta, Ilkka</creatorcontrib><creatorcontrib>Muhonen, Virpi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cellular physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salonius, Eve</au><au>Kontturi, Leena</au><au>Laitinen, Anita</au><au>Haaparanta, Anne‐Marie</au><au>Korhonen, Matti</au><au>Nystedt, Johanna</au><au>Kiviranta, Ilkka</au><au>Muhonen, Virpi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chondrogenic differentiation of human bone marrow‐derived mesenchymal stromal cells in a three‐dimensional environment</atitle><jtitle>Journal of cellular physiology</jtitle><addtitle>J Cell Physiol</addtitle><date>2020-04</date><risdate>2020</risdate><volume>235</volume><issue>4</issue><spage>3497</spage><epage>3507</epage><pages>3497-3507</pages><issn>0021-9541</issn><eissn>1097-4652</eissn><abstract>Cell therapy combined with biomaterial scaffolds is used to treat cartilage defects. We hypothesized that chondrogenic differentiation bone marrow‐derived mesenchymal stem cells (BM‐MSCs) in three‐dimensional biomaterial scaffolds would initiate cartilaginous matrix deposition and prepare the construct for cartilage regeneration in situ. The chondrogenic capability of human BM‐MSCs was first verified in a pellet culture. The BM‐MSCs were then either seeded onto a composite scaffold rhCo‐PLA combining polylactide and collagen type II (C2) or type III (C3), or commercial collagen type I/III membrane (CG). The BM‐MSCs were either cultured in a proliferation medium or chondrogenic culture medium. Adult human chondrocytes (ACs) served as controls. After 3, 14, and 28 days, the constructs were analyzed with quantitative polymerase chain reaction and confocal microscopy and sulfated glycosaminoglycans (GAGs) were measured. The differentiated BM‐MSCs entered a hypertrophic state by Day 14 of culture. The ACs showed dedifferentiation with no expression of chondrogenic genes and low amount of GAG. The CG membrane induced the highest expression levels of hypertrophic genes. The two different collagen types in composite scaffolds yielded similar results. Regardless of the biomaterial scaffold, culturing BM‐MSCs in chondrogenic differentiation medium resulted in chondrocyte hypertrophy. Thus, caution for cell fate is required when designing cell‐biomaterial constructs for cartilage regeneration. The purpose of the study was to investigate, whether chondrogenic predifferentiation of bone marrow‐derived mesenchymal stem cells (BM‐MSCs) in novel three‐dimensional biomaterial scaffolds would initiate cartilaginous matrix deposition and whether the type of collagen used in the scaffolds would affect the results. The two different collagen types in composite scaffolds yielded similar results. Regardless of the biomaterial scaffold, culturing BM‐MSCs in chondrogenic differentiation medium resulted in chondrocyte hypertrophy.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31552691</pmid><doi>10.1002/jcp.29238</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1988-2800</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9541
ispartof Journal of cellular physiology, 2020-04, Vol.235 (4), p.3497-3507
issn 0021-9541
1097-4652
language eng
recordid cdi_proquest_miscellaneous_2297126335
source MEDLINE; Wiley Online Library All Journals
subjects biomaterial
Biomaterials
Biomedical materials
Bone biomaterials
Bone marrow
Bone Marrow Cells - cytology
Bone Marrow Cells - metabolism
Cartilage
Cartilage, Articular - growth & development
Cartilage, Articular - metabolism
Cell culture
Cell Differentiation - genetics
Cell fate
Cell Proliferation - genetics
Cell therapy
Chondrocytes
Chondrocytes - cytology
Chondrocytes - metabolism
Chondrogenesis
Chondrogenesis - genetics
Collagen
Collagen (type I)
Collagen (type II)
Collagen (type III)
Collagen - genetics
Collagen - metabolism
Confocal microscopy
Differentiation
Eutrophication
Extracellular Matrix - genetics
Gene expression
Genes
Glycosaminoglycans
Glycosaminoglycans - genetics
Glycosaminoglycans - metabolism
Humans
Hypertrophy
Membranes
Mesenchymal stem cells
Mesenchymal Stem Cells - cytology
Mesenchymal Stem Cells - metabolism
Mesenchyme
MSC
Polylactic acid
Polymerase chain reaction
Regeneration
Regeneration - genetics
scaffold
Scaffolds
Stem cells
Stromal cells
title Chondrogenic differentiation of human bone marrow‐derived mesenchymal stromal cells in a three‐dimensional environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T03%3A30%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chondrogenic%20differentiation%20of%20human%20bone%20marrow%E2%80%90derived%20mesenchymal%20stromal%20cells%20in%20a%20three%E2%80%90dimensional%20environment&rft.jtitle=Journal%20of%20cellular%20physiology&rft.au=Salonius,%20Eve&rft.date=2020-04&rft.volume=235&rft.issue=4&rft.spage=3497&rft.epage=3507&rft.pages=3497-3507&rft.issn=0021-9541&rft.eissn=1097-4652&rft_id=info:doi/10.1002/jcp.29238&rft_dat=%3Cproquest_cross%3E2297126335%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2333562985&rft_id=info:pmid/31552691&rfr_iscdi=true