Chondrogenic differentiation of human bone marrow‐derived mesenchymal stromal cells in a three‐dimensional environment
Cell therapy combined with biomaterial scaffolds is used to treat cartilage defects. We hypothesized that chondrogenic differentiation bone marrow‐derived mesenchymal stem cells (BM‐MSCs) in three‐dimensional biomaterial scaffolds would initiate cartilaginous matrix deposition and prepare the constr...
Gespeichert in:
Veröffentlicht in: | Journal of cellular physiology 2020-04, Vol.235 (4), p.3497-3507 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3507 |
---|---|
container_issue | 4 |
container_start_page | 3497 |
container_title | Journal of cellular physiology |
container_volume | 235 |
creator | Salonius, Eve Kontturi, Leena Laitinen, Anita Haaparanta, Anne‐Marie Korhonen, Matti Nystedt, Johanna Kiviranta, Ilkka Muhonen, Virpi |
description | Cell therapy combined with biomaterial scaffolds is used to treat cartilage defects. We hypothesized that chondrogenic differentiation bone marrow‐derived mesenchymal stem cells (BM‐MSCs) in three‐dimensional biomaterial scaffolds would initiate cartilaginous matrix deposition and prepare the construct for cartilage regeneration in situ. The chondrogenic capability of human BM‐MSCs was first verified in a pellet culture. The BM‐MSCs were then either seeded onto a composite scaffold rhCo‐PLA combining polylactide and collagen type II (C2) or type III (C3), or commercial collagen type I/III membrane (CG). The BM‐MSCs were either cultured in a proliferation medium or chondrogenic culture medium. Adult human chondrocytes (ACs) served as controls. After 3, 14, and 28 days, the constructs were analyzed with quantitative polymerase chain reaction and confocal microscopy and sulfated glycosaminoglycans (GAGs) were measured. The differentiated BM‐MSCs entered a hypertrophic state by Day 14 of culture. The ACs showed dedifferentiation with no expression of chondrogenic genes and low amount of GAG. The CG membrane induced the highest expression levels of hypertrophic genes. The two different collagen types in composite scaffolds yielded similar results. Regardless of the biomaterial scaffold, culturing BM‐MSCs in chondrogenic differentiation medium resulted in chondrocyte hypertrophy. Thus, caution for cell fate is required when designing cell‐biomaterial constructs for cartilage regeneration.
The purpose of the study was to investigate, whether chondrogenic predifferentiation of bone marrow‐derived mesenchymal stem cells (BM‐MSCs) in novel three‐dimensional biomaterial scaffolds would initiate cartilaginous matrix deposition and whether the type of collagen used in the scaffolds would affect the results. The two different collagen types in composite scaffolds yielded similar results. Regardless of the biomaterial scaffold, culturing BM‐MSCs in chondrogenic differentiation medium resulted in chondrocyte hypertrophy. |
doi_str_mv | 10.1002/jcp.29238 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2297126335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2297126335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3888-ae6efc9ac5b9933b6c165e362a6d92343001fb71cb71289f206a9bd47a9ac18d3</originalsourceid><addsrcrecordid>eNp1kctOwzAQRS0EgvJY8APIEhtYhPrRuPESVTyFBAtYR44zoa4Su9hJUVnxCXwjX4JDCwskFqORZs5cXfsidEjJGSWEDWd6fsYk49kGGlAix8lIpGwTDeKOJjId0R20G8KMECIl59toh9M0ZULSAXqbTJ0tvXsGazQuTVWBB9sa1RpnsavwtGuUxYWzgBvlvXv9fP8owZsFlLiBAFZPl42qcWi967uGug7YWKxwO_UAPW4asCHqxTXYhfHOxkG7j7YqVQc4WPc99HR58Ti5Tu7ur24m53eJ5lmWJQoEVFoqnRa9-0JoKlLggilRxjePOCG0KsZUx2KZrBgRShblaKziDc1KvodOVrpz7146CG3emNDbVBZcF3LGZLwUnKcRPf6Dzlzno-9I8QgIJrOeOl1R2rsQPFT53Jv4OcuckrwPJI-B5N-BRPZordgVDZS_5E8CERiugFdTw_J_pfx28rCS_ALMJZi-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2333562985</pqid></control><display><type>article</type><title>Chondrogenic differentiation of human bone marrow‐derived mesenchymal stromal cells in a three‐dimensional environment</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Salonius, Eve ; Kontturi, Leena ; Laitinen, Anita ; Haaparanta, Anne‐Marie ; Korhonen, Matti ; Nystedt, Johanna ; Kiviranta, Ilkka ; Muhonen, Virpi</creator><creatorcontrib>Salonius, Eve ; Kontturi, Leena ; Laitinen, Anita ; Haaparanta, Anne‐Marie ; Korhonen, Matti ; Nystedt, Johanna ; Kiviranta, Ilkka ; Muhonen, Virpi</creatorcontrib><description>Cell therapy combined with biomaterial scaffolds is used to treat cartilage defects. We hypothesized that chondrogenic differentiation bone marrow‐derived mesenchymal stem cells (BM‐MSCs) in three‐dimensional biomaterial scaffolds would initiate cartilaginous matrix deposition and prepare the construct for cartilage regeneration in situ. The chondrogenic capability of human BM‐MSCs was first verified in a pellet culture. The BM‐MSCs were then either seeded onto a composite scaffold rhCo‐PLA combining polylactide and collagen type II (C2) or type III (C3), or commercial collagen type I/III membrane (CG). The BM‐MSCs were either cultured in a proliferation medium or chondrogenic culture medium. Adult human chondrocytes (ACs) served as controls. After 3, 14, and 28 days, the constructs were analyzed with quantitative polymerase chain reaction and confocal microscopy and sulfated glycosaminoglycans (GAGs) were measured. The differentiated BM‐MSCs entered a hypertrophic state by Day 14 of culture. The ACs showed dedifferentiation with no expression of chondrogenic genes and low amount of GAG. The CG membrane induced the highest expression levels of hypertrophic genes. The two different collagen types in composite scaffolds yielded similar results. Regardless of the biomaterial scaffold, culturing BM‐MSCs in chondrogenic differentiation medium resulted in chondrocyte hypertrophy. Thus, caution for cell fate is required when designing cell‐biomaterial constructs for cartilage regeneration.
The purpose of the study was to investigate, whether chondrogenic predifferentiation of bone marrow‐derived mesenchymal stem cells (BM‐MSCs) in novel three‐dimensional biomaterial scaffolds would initiate cartilaginous matrix deposition and whether the type of collagen used in the scaffolds would affect the results. The two different collagen types in composite scaffolds yielded similar results. Regardless of the biomaterial scaffold, culturing BM‐MSCs in chondrogenic differentiation medium resulted in chondrocyte hypertrophy.</description><identifier>ISSN: 0021-9541</identifier><identifier>EISSN: 1097-4652</identifier><identifier>DOI: 10.1002/jcp.29238</identifier><identifier>PMID: 31552691</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>biomaterial ; Biomaterials ; Biomedical materials ; Bone biomaterials ; Bone marrow ; Bone Marrow Cells - cytology ; Bone Marrow Cells - metabolism ; Cartilage ; Cartilage, Articular - growth & development ; Cartilage, Articular - metabolism ; Cell culture ; Cell Differentiation - genetics ; Cell fate ; Cell Proliferation - genetics ; Cell therapy ; Chondrocytes ; Chondrocytes - cytology ; Chondrocytes - metabolism ; Chondrogenesis ; Chondrogenesis - genetics ; Collagen ; Collagen (type I) ; Collagen (type II) ; Collagen (type III) ; Collagen - genetics ; Collagen - metabolism ; Confocal microscopy ; Differentiation ; Eutrophication ; Extracellular Matrix - genetics ; Gene expression ; Genes ; Glycosaminoglycans ; Glycosaminoglycans - genetics ; Glycosaminoglycans - metabolism ; Humans ; Hypertrophy ; Membranes ; Mesenchymal stem cells ; Mesenchymal Stem Cells - cytology ; Mesenchymal Stem Cells - metabolism ; Mesenchyme ; MSC ; Polylactic acid ; Polymerase chain reaction ; Regeneration ; Regeneration - genetics ; scaffold ; Scaffolds ; Stem cells ; Stromal cells</subject><ispartof>Journal of cellular physiology, 2020-04, Vol.235 (4), p.3497-3507</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><rights>2020 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3888-ae6efc9ac5b9933b6c165e362a6d92343001fb71cb71289f206a9bd47a9ac18d3</citedby><cites>FETCH-LOGICAL-c3888-ae6efc9ac5b9933b6c165e362a6d92343001fb71cb71289f206a9bd47a9ac18d3</cites><orcidid>0000-0003-1988-2800</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcp.29238$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcp.29238$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31552691$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Salonius, Eve</creatorcontrib><creatorcontrib>Kontturi, Leena</creatorcontrib><creatorcontrib>Laitinen, Anita</creatorcontrib><creatorcontrib>Haaparanta, Anne‐Marie</creatorcontrib><creatorcontrib>Korhonen, Matti</creatorcontrib><creatorcontrib>Nystedt, Johanna</creatorcontrib><creatorcontrib>Kiviranta, Ilkka</creatorcontrib><creatorcontrib>Muhonen, Virpi</creatorcontrib><title>Chondrogenic differentiation of human bone marrow‐derived mesenchymal stromal cells in a three‐dimensional environment</title><title>Journal of cellular physiology</title><addtitle>J Cell Physiol</addtitle><description>Cell therapy combined with biomaterial scaffolds is used to treat cartilage defects. We hypothesized that chondrogenic differentiation bone marrow‐derived mesenchymal stem cells (BM‐MSCs) in three‐dimensional biomaterial scaffolds would initiate cartilaginous matrix deposition and prepare the construct for cartilage regeneration in situ. The chondrogenic capability of human BM‐MSCs was first verified in a pellet culture. The BM‐MSCs were then either seeded onto a composite scaffold rhCo‐PLA combining polylactide and collagen type II (C2) or type III (C3), or commercial collagen type I/III membrane (CG). The BM‐MSCs were either cultured in a proliferation medium or chondrogenic culture medium. Adult human chondrocytes (ACs) served as controls. After 3, 14, and 28 days, the constructs were analyzed with quantitative polymerase chain reaction and confocal microscopy and sulfated glycosaminoglycans (GAGs) were measured. The differentiated BM‐MSCs entered a hypertrophic state by Day 14 of culture. The ACs showed dedifferentiation with no expression of chondrogenic genes and low amount of GAG. The CG membrane induced the highest expression levels of hypertrophic genes. The two different collagen types in composite scaffolds yielded similar results. Regardless of the biomaterial scaffold, culturing BM‐MSCs in chondrogenic differentiation medium resulted in chondrocyte hypertrophy. Thus, caution for cell fate is required when designing cell‐biomaterial constructs for cartilage regeneration.
The purpose of the study was to investigate, whether chondrogenic predifferentiation of bone marrow‐derived mesenchymal stem cells (BM‐MSCs) in novel three‐dimensional biomaterial scaffolds would initiate cartilaginous matrix deposition and whether the type of collagen used in the scaffolds would affect the results. The two different collagen types in composite scaffolds yielded similar results. Regardless of the biomaterial scaffold, culturing BM‐MSCs in chondrogenic differentiation medium resulted in chondrocyte hypertrophy.</description><subject>biomaterial</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Bone biomaterials</subject><subject>Bone marrow</subject><subject>Bone Marrow Cells - cytology</subject><subject>Bone Marrow Cells - metabolism</subject><subject>Cartilage</subject><subject>Cartilage, Articular - growth & development</subject><subject>Cartilage, Articular - metabolism</subject><subject>Cell culture</subject><subject>Cell Differentiation - genetics</subject><subject>Cell fate</subject><subject>Cell Proliferation - genetics</subject><subject>Cell therapy</subject><subject>Chondrocytes</subject><subject>Chondrocytes - cytology</subject><subject>Chondrocytes - metabolism</subject><subject>Chondrogenesis</subject><subject>Chondrogenesis - genetics</subject><subject>Collagen</subject><subject>Collagen (type I)</subject><subject>Collagen (type II)</subject><subject>Collagen (type III)</subject><subject>Collagen - genetics</subject><subject>Collagen - metabolism</subject><subject>Confocal microscopy</subject><subject>Differentiation</subject><subject>Eutrophication</subject><subject>Extracellular Matrix - genetics</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Glycosaminoglycans</subject><subject>Glycosaminoglycans - genetics</subject><subject>Glycosaminoglycans - metabolism</subject><subject>Humans</subject><subject>Hypertrophy</subject><subject>Membranes</subject><subject>Mesenchymal stem cells</subject><subject>Mesenchymal Stem Cells - cytology</subject><subject>Mesenchymal Stem Cells - metabolism</subject><subject>Mesenchyme</subject><subject>MSC</subject><subject>Polylactic acid</subject><subject>Polymerase chain reaction</subject><subject>Regeneration</subject><subject>Regeneration - genetics</subject><subject>scaffold</subject><subject>Scaffolds</subject><subject>Stem cells</subject><subject>Stromal cells</subject><issn>0021-9541</issn><issn>1097-4652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kctOwzAQRS0EgvJY8APIEhtYhPrRuPESVTyFBAtYR44zoa4Su9hJUVnxCXwjX4JDCwskFqORZs5cXfsidEjJGSWEDWd6fsYk49kGGlAix8lIpGwTDeKOJjId0R20G8KMECIl59toh9M0ZULSAXqbTJ0tvXsGazQuTVWBB9sa1RpnsavwtGuUxYWzgBvlvXv9fP8owZsFlLiBAFZPl42qcWi967uGug7YWKxwO_UAPW4asCHqxTXYhfHOxkG7j7YqVQc4WPc99HR58Ti5Tu7ur24m53eJ5lmWJQoEVFoqnRa9-0JoKlLggilRxjePOCG0KsZUx2KZrBgRShblaKziDc1KvodOVrpz7146CG3emNDbVBZcF3LGZLwUnKcRPf6Dzlzno-9I8QgIJrOeOl1R2rsQPFT53Jv4OcuckrwPJI-B5N-BRPZordgVDZS_5E8CERiugFdTw_J_pfx28rCS_ALMJZi-</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Salonius, Eve</creator><creator>Kontturi, Leena</creator><creator>Laitinen, Anita</creator><creator>Haaparanta, Anne‐Marie</creator><creator>Korhonen, Matti</creator><creator>Nystedt, Johanna</creator><creator>Kiviranta, Ilkka</creator><creator>Muhonen, Virpi</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1988-2800</orcidid></search><sort><creationdate>202004</creationdate><title>Chondrogenic differentiation of human bone marrow‐derived mesenchymal stromal cells in a three‐dimensional environment</title><author>Salonius, Eve ; Kontturi, Leena ; Laitinen, Anita ; Haaparanta, Anne‐Marie ; Korhonen, Matti ; Nystedt, Johanna ; Kiviranta, Ilkka ; Muhonen, Virpi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3888-ae6efc9ac5b9933b6c165e362a6d92343001fb71cb71289f206a9bd47a9ac18d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>biomaterial</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Bone biomaterials</topic><topic>Bone marrow</topic><topic>Bone Marrow Cells - cytology</topic><topic>Bone Marrow Cells - metabolism</topic><topic>Cartilage</topic><topic>Cartilage, Articular - growth & development</topic><topic>Cartilage, Articular - metabolism</topic><topic>Cell culture</topic><topic>Cell Differentiation - genetics</topic><topic>Cell fate</topic><topic>Cell Proliferation - genetics</topic><topic>Cell therapy</topic><topic>Chondrocytes</topic><topic>Chondrocytes - cytology</topic><topic>Chondrocytes - metabolism</topic><topic>Chondrogenesis</topic><topic>Chondrogenesis - genetics</topic><topic>Collagen</topic><topic>Collagen (type I)</topic><topic>Collagen (type II)</topic><topic>Collagen (type III)</topic><topic>Collagen - genetics</topic><topic>Collagen - metabolism</topic><topic>Confocal microscopy</topic><topic>Differentiation</topic><topic>Eutrophication</topic><topic>Extracellular Matrix - genetics</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Glycosaminoglycans</topic><topic>Glycosaminoglycans - genetics</topic><topic>Glycosaminoglycans - metabolism</topic><topic>Humans</topic><topic>Hypertrophy</topic><topic>Membranes</topic><topic>Mesenchymal stem cells</topic><topic>Mesenchymal Stem Cells - cytology</topic><topic>Mesenchymal Stem Cells - metabolism</topic><topic>Mesenchyme</topic><topic>MSC</topic><topic>Polylactic acid</topic><topic>Polymerase chain reaction</topic><topic>Regeneration</topic><topic>Regeneration - genetics</topic><topic>scaffold</topic><topic>Scaffolds</topic><topic>Stem cells</topic><topic>Stromal cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salonius, Eve</creatorcontrib><creatorcontrib>Kontturi, Leena</creatorcontrib><creatorcontrib>Laitinen, Anita</creatorcontrib><creatorcontrib>Haaparanta, Anne‐Marie</creatorcontrib><creatorcontrib>Korhonen, Matti</creatorcontrib><creatorcontrib>Nystedt, Johanna</creatorcontrib><creatorcontrib>Kiviranta, Ilkka</creatorcontrib><creatorcontrib>Muhonen, Virpi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cellular physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salonius, Eve</au><au>Kontturi, Leena</au><au>Laitinen, Anita</au><au>Haaparanta, Anne‐Marie</au><au>Korhonen, Matti</au><au>Nystedt, Johanna</au><au>Kiviranta, Ilkka</au><au>Muhonen, Virpi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chondrogenic differentiation of human bone marrow‐derived mesenchymal stromal cells in a three‐dimensional environment</atitle><jtitle>Journal of cellular physiology</jtitle><addtitle>J Cell Physiol</addtitle><date>2020-04</date><risdate>2020</risdate><volume>235</volume><issue>4</issue><spage>3497</spage><epage>3507</epage><pages>3497-3507</pages><issn>0021-9541</issn><eissn>1097-4652</eissn><abstract>Cell therapy combined with biomaterial scaffolds is used to treat cartilage defects. We hypothesized that chondrogenic differentiation bone marrow‐derived mesenchymal stem cells (BM‐MSCs) in three‐dimensional biomaterial scaffolds would initiate cartilaginous matrix deposition and prepare the construct for cartilage regeneration in situ. The chondrogenic capability of human BM‐MSCs was first verified in a pellet culture. The BM‐MSCs were then either seeded onto a composite scaffold rhCo‐PLA combining polylactide and collagen type II (C2) or type III (C3), or commercial collagen type I/III membrane (CG). The BM‐MSCs were either cultured in a proliferation medium or chondrogenic culture medium. Adult human chondrocytes (ACs) served as controls. After 3, 14, and 28 days, the constructs were analyzed with quantitative polymerase chain reaction and confocal microscopy and sulfated glycosaminoglycans (GAGs) were measured. The differentiated BM‐MSCs entered a hypertrophic state by Day 14 of culture. The ACs showed dedifferentiation with no expression of chondrogenic genes and low amount of GAG. The CG membrane induced the highest expression levels of hypertrophic genes. The two different collagen types in composite scaffolds yielded similar results. Regardless of the biomaterial scaffold, culturing BM‐MSCs in chondrogenic differentiation medium resulted in chondrocyte hypertrophy. Thus, caution for cell fate is required when designing cell‐biomaterial constructs for cartilage regeneration.
The purpose of the study was to investigate, whether chondrogenic predifferentiation of bone marrow‐derived mesenchymal stem cells (BM‐MSCs) in novel three‐dimensional biomaterial scaffolds would initiate cartilaginous matrix deposition and whether the type of collagen used in the scaffolds would affect the results. The two different collagen types in composite scaffolds yielded similar results. Regardless of the biomaterial scaffold, culturing BM‐MSCs in chondrogenic differentiation medium resulted in chondrocyte hypertrophy.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31552691</pmid><doi>10.1002/jcp.29238</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1988-2800</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9541 |
ispartof | Journal of cellular physiology, 2020-04, Vol.235 (4), p.3497-3507 |
issn | 0021-9541 1097-4652 |
language | eng |
recordid | cdi_proquest_miscellaneous_2297126335 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | biomaterial Biomaterials Biomedical materials Bone biomaterials Bone marrow Bone Marrow Cells - cytology Bone Marrow Cells - metabolism Cartilage Cartilage, Articular - growth & development Cartilage, Articular - metabolism Cell culture Cell Differentiation - genetics Cell fate Cell Proliferation - genetics Cell therapy Chondrocytes Chondrocytes - cytology Chondrocytes - metabolism Chondrogenesis Chondrogenesis - genetics Collagen Collagen (type I) Collagen (type II) Collagen (type III) Collagen - genetics Collagen - metabolism Confocal microscopy Differentiation Eutrophication Extracellular Matrix - genetics Gene expression Genes Glycosaminoglycans Glycosaminoglycans - genetics Glycosaminoglycans - metabolism Humans Hypertrophy Membranes Mesenchymal stem cells Mesenchymal Stem Cells - cytology Mesenchymal Stem Cells - metabolism Mesenchyme MSC Polylactic acid Polymerase chain reaction Regeneration Regeneration - genetics scaffold Scaffolds Stem cells Stromal cells |
title | Chondrogenic differentiation of human bone marrow‐derived mesenchymal stromal cells in a three‐dimensional environment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T03%3A30%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chondrogenic%20differentiation%20of%20human%20bone%20marrow%E2%80%90derived%20mesenchymal%20stromal%20cells%20in%20a%20three%E2%80%90dimensional%20environment&rft.jtitle=Journal%20of%20cellular%20physiology&rft.au=Salonius,%20Eve&rft.date=2020-04&rft.volume=235&rft.issue=4&rft.spage=3497&rft.epage=3507&rft.pages=3497-3507&rft.issn=0021-9541&rft.eissn=1097-4652&rft_id=info:doi/10.1002/jcp.29238&rft_dat=%3Cproquest_cross%3E2297126335%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2333562985&rft_id=info:pmid/31552691&rfr_iscdi=true |