Single-cell transcriptomic profiling of the aging mouse brain

The mammalian brain is complex, with multiple cell types performing a variety of diverse functions, but exactly how each cell type is affected in aging remains largely unknown. Here we performed a single-cell transcriptomic analysis of young and old mouse brains. We provide comprehensive datasets of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature neuroscience 2019-10, Vol.22 (10), p.1696-1708
Hauptverfasser: Ximerakis, Methodios, Lipnick, Scott L., Innes, Brendan T., Simmons, Sean K., Adiconis, Xian, Dionne, Danielle, Mayweather, Brittany A., Nguyen, Lan, Niziolek, Zachary, Ozek, Ceren, Butty, Vincent L., Isserlin, Ruth, Buchanan, Sean M., Levine, Stuart S., Regev, Aviv, Bader, Gary D., Levin, Joshua Z., Rubin, Lee L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1708
container_issue 10
container_start_page 1696
container_title Nature neuroscience
container_volume 22
creator Ximerakis, Methodios
Lipnick, Scott L.
Innes, Brendan T.
Simmons, Sean K.
Adiconis, Xian
Dionne, Danielle
Mayweather, Brittany A.
Nguyen, Lan
Niziolek, Zachary
Ozek, Ceren
Butty, Vincent L.
Isserlin, Ruth
Buchanan, Sean M.
Levine, Stuart S.
Regev, Aviv
Bader, Gary D.
Levin, Joshua Z.
Rubin, Lee L.
description The mammalian brain is complex, with multiple cell types performing a variety of diverse functions, but exactly how each cell type is affected in aging remains largely unknown. Here we performed a single-cell transcriptomic analysis of young and old mouse brains. We provide comprehensive datasets of aging-related genes, pathways and ligand–receptor interactions in nearly all brain cell types. Our analysis identified gene signatures that vary in a coordinated manner across cell types and gene sets that are regulated in a cell-type specific manner, even at times in opposite directions. These data reveal that aging, rather than inducing a universal program, drives a distinct transcriptional course in each cell population, and they highlight key molecular processes, including ribosome biogenesis, underlying brain aging. Overall, these large-scale datasets (accessible online at https://portals.broadinstitute.org/single_cell/study/aging-mouse-brain ) provide a resource for the neuroscience community that will facilitate additional discoveries directed towards understanding and modifying the aging process. A single-cell transcriptomic atlas of the aging mouse brain reveals coordinated and cell-type-specific aging signatures across multiple cell populations. Catalogs of aging-related genes, pathways and ligand–receptor interactions are reported.
doi_str_mv 10.1038/s41593-019-0491-3
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2297124779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A600699000</galeid><sourcerecordid>A600699000</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-28bc1a99f6b8f2a7127649d050bb666c77f3f7baaf619c8d065830c8bbf9d1813</originalsourceid><addsrcrecordid>eNp1kU9LHTEUxUNRqrX9AN2UATftIjaZTG4mCxcibRUEobbrkGSS6cj8eSYz0H577_Cs8kTJIgn53ZNz7yHkI2cnnIn6a6641IIyrimrNKfiDTnksgLKVQl7eGZaUSglHJB3Od8yxpSs9VtyILiUHBg_JKc33dj2gfrQ98Wc7Jh96jbzNHS-2KQpdj2-F1Ms5j-hsO16GaYlh8Il243vyX60fQ4fHvYj8vv7t1_nF_Tq-sfl-dkV9fjNTMvaeW61juDqWFrFSwWVbphkzgGAVyqKqJy1Ebj2dcNA1oL52rmoG15zcUQ-b3XR0t0S8myGLq-W7RjQjSlLjaKVUhrR42fo7bSkEd2tFICQlYInqrV9MN0YJ-zdr6LmDBgDrXFYSJ28QOFqAs5nGgOOJ-wWfNkpQGYOf-fWLjmby5ufuyzfsj5NOacQzSZ1g03_DGdmjdds4zUYr1njNQJrPj00t7ghNI8V__NEoNwCGZ_GNqSn7l9XvQesLauu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2296635476</pqid></control><display><type>article</type><title>Single-cell transcriptomic profiling of the aging mouse brain</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Ximerakis, Methodios ; Lipnick, Scott L. ; Innes, Brendan T. ; Simmons, Sean K. ; Adiconis, Xian ; Dionne, Danielle ; Mayweather, Brittany A. ; Nguyen, Lan ; Niziolek, Zachary ; Ozek, Ceren ; Butty, Vincent L. ; Isserlin, Ruth ; Buchanan, Sean M. ; Levine, Stuart S. ; Regev, Aviv ; Bader, Gary D. ; Levin, Joshua Z. ; Rubin, Lee L.</creator><creatorcontrib>Ximerakis, Methodios ; Lipnick, Scott L. ; Innes, Brendan T. ; Simmons, Sean K. ; Adiconis, Xian ; Dionne, Danielle ; Mayweather, Brittany A. ; Nguyen, Lan ; Niziolek, Zachary ; Ozek, Ceren ; Butty, Vincent L. ; Isserlin, Ruth ; Buchanan, Sean M. ; Levine, Stuart S. ; Regev, Aviv ; Bader, Gary D. ; Levin, Joshua Z. ; Rubin, Lee L.</creatorcontrib><description>The mammalian brain is complex, with multiple cell types performing a variety of diverse functions, but exactly how each cell type is affected in aging remains largely unknown. Here we performed a single-cell transcriptomic analysis of young and old mouse brains. We provide comprehensive datasets of aging-related genes, pathways and ligand–receptor interactions in nearly all brain cell types. Our analysis identified gene signatures that vary in a coordinated manner across cell types and gene sets that are regulated in a cell-type specific manner, even at times in opposite directions. These data reveal that aging, rather than inducing a universal program, drives a distinct transcriptional course in each cell population, and they highlight key molecular processes, including ribosome biogenesis, underlying brain aging. Overall, these large-scale datasets (accessible online at https://portals.broadinstitute.org/single_cell/study/aging-mouse-brain ) provide a resource for the neuroscience community that will facilitate additional discoveries directed towards understanding and modifying the aging process. A single-cell transcriptomic atlas of the aging mouse brain reveals coordinated and cell-type-specific aging signatures across multiple cell populations. Catalogs of aging-related genes, pathways and ligand–receptor interactions are reported.</description><identifier>ISSN: 1097-6256</identifier><identifier>EISSN: 1546-1726</identifier><identifier>DOI: 10.1038/s41593-019-0491-3</identifier><identifier>PMID: 31551601</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>101/1 ; 13/31 ; 13/51 ; 14/19 ; 14/32 ; 38/39 ; 38/90 ; 38/91 ; 631/337/2019 ; 631/378/2611 ; 631/378/87 ; 631/80 ; 64/60 ; Aging ; Aging (artificial) ; Aging - genetics ; Animal Genetics and Genomics ; Animals ; Behavioral Sciences ; Biological Techniques ; Biomedical and Life Sciences ; Biomedicine ; Brain ; Brain - cytology ; Brain - growth &amp; development ; Brain cells ; Cell Communication - genetics ; Cell Lineage - genetics ; Datasets ; Gene Expression Profiling ; Gene Expression Regulation - genetics ; Genetic aspects ; High-Throughput Nucleotide Sequencing ; Male ; Mice ; Mice, Inbred C57BL ; Nervous system ; Neurobiology ; Neurons - physiology ; Neurosciences ; Physiological aspects ; Resource ; Ribosomes - genetics ; Single-Cell Analysis ; Transcription ; Transcriptome - genetics</subject><ispartof>Nature neuroscience, 2019-10, Vol.22 (10), p.1696-1708</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2019</rights><rights>COPYRIGHT 2019 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Oct 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c516t-28bc1a99f6b8f2a7127649d050bb666c77f3f7baaf619c8d065830c8bbf9d1813</citedby><cites>FETCH-LOGICAL-c516t-28bc1a99f6b8f2a7127649d050bb666c77f3f7baaf619c8d065830c8bbf9d1813</cites><orcidid>0000-0002-2815-7558 ; 0000-0002-8658-841X ; 0000-0002-8338-4323 ; 0000-0003-2496-3154 ; 0000-0003-1173-2429 ; 0000-0003-0185-8861 ; 0000-0002-0170-3598</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41593-019-0491-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41593-019-0491-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31551601$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ximerakis, Methodios</creatorcontrib><creatorcontrib>Lipnick, Scott L.</creatorcontrib><creatorcontrib>Innes, Brendan T.</creatorcontrib><creatorcontrib>Simmons, Sean K.</creatorcontrib><creatorcontrib>Adiconis, Xian</creatorcontrib><creatorcontrib>Dionne, Danielle</creatorcontrib><creatorcontrib>Mayweather, Brittany A.</creatorcontrib><creatorcontrib>Nguyen, Lan</creatorcontrib><creatorcontrib>Niziolek, Zachary</creatorcontrib><creatorcontrib>Ozek, Ceren</creatorcontrib><creatorcontrib>Butty, Vincent L.</creatorcontrib><creatorcontrib>Isserlin, Ruth</creatorcontrib><creatorcontrib>Buchanan, Sean M.</creatorcontrib><creatorcontrib>Levine, Stuart S.</creatorcontrib><creatorcontrib>Regev, Aviv</creatorcontrib><creatorcontrib>Bader, Gary D.</creatorcontrib><creatorcontrib>Levin, Joshua Z.</creatorcontrib><creatorcontrib>Rubin, Lee L.</creatorcontrib><title>Single-cell transcriptomic profiling of the aging mouse brain</title><title>Nature neuroscience</title><addtitle>Nat Neurosci</addtitle><addtitle>Nat Neurosci</addtitle><description>The mammalian brain is complex, with multiple cell types performing a variety of diverse functions, but exactly how each cell type is affected in aging remains largely unknown. Here we performed a single-cell transcriptomic analysis of young and old mouse brains. We provide comprehensive datasets of aging-related genes, pathways and ligand–receptor interactions in nearly all brain cell types. Our analysis identified gene signatures that vary in a coordinated manner across cell types and gene sets that are regulated in a cell-type specific manner, even at times in opposite directions. These data reveal that aging, rather than inducing a universal program, drives a distinct transcriptional course in each cell population, and they highlight key molecular processes, including ribosome biogenesis, underlying brain aging. Overall, these large-scale datasets (accessible online at https://portals.broadinstitute.org/single_cell/study/aging-mouse-brain ) provide a resource for the neuroscience community that will facilitate additional discoveries directed towards understanding and modifying the aging process. A single-cell transcriptomic atlas of the aging mouse brain reveals coordinated and cell-type-specific aging signatures across multiple cell populations. Catalogs of aging-related genes, pathways and ligand–receptor interactions are reported.</description><subject>101/1</subject><subject>13/31</subject><subject>13/51</subject><subject>14/19</subject><subject>14/32</subject><subject>38/39</subject><subject>38/90</subject><subject>38/91</subject><subject>631/337/2019</subject><subject>631/378/2611</subject><subject>631/378/87</subject><subject>631/80</subject><subject>64/60</subject><subject>Aging</subject><subject>Aging (artificial)</subject><subject>Aging - genetics</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain</subject><subject>Brain - cytology</subject><subject>Brain - growth &amp; development</subject><subject>Brain cells</subject><subject>Cell Communication - genetics</subject><subject>Cell Lineage - genetics</subject><subject>Datasets</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation - genetics</subject><subject>Genetic aspects</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Nervous system</subject><subject>Neurobiology</subject><subject>Neurons - physiology</subject><subject>Neurosciences</subject><subject>Physiological aspects</subject><subject>Resource</subject><subject>Ribosomes - genetics</subject><subject>Single-Cell Analysis</subject><subject>Transcription</subject><subject>Transcriptome - genetics</subject><issn>1097-6256</issn><issn>1546-1726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kU9LHTEUxUNRqrX9AN2UATftIjaZTG4mCxcibRUEobbrkGSS6cj8eSYz0H577_Cs8kTJIgn53ZNz7yHkI2cnnIn6a6641IIyrimrNKfiDTnksgLKVQl7eGZaUSglHJB3Od8yxpSs9VtyILiUHBg_JKc33dj2gfrQ98Wc7Jh96jbzNHS-2KQpdj2-F1Ms5j-hsO16GaYlh8Il243vyX60fQ4fHvYj8vv7t1_nF_Tq-sfl-dkV9fjNTMvaeW61juDqWFrFSwWVbphkzgGAVyqKqJy1Ebj2dcNA1oL52rmoG15zcUQ-b3XR0t0S8myGLq-W7RjQjSlLjaKVUhrR42fo7bSkEd2tFICQlYInqrV9MN0YJ-zdr6LmDBgDrXFYSJ28QOFqAs5nGgOOJ-wWfNkpQGYOf-fWLjmby5ufuyzfsj5NOacQzSZ1g03_DGdmjdds4zUYr1njNQJrPj00t7ghNI8V__NEoNwCGZ_GNqSn7l9XvQesLauu</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Ximerakis, Methodios</creator><creator>Lipnick, Scott L.</creator><creator>Innes, Brendan T.</creator><creator>Simmons, Sean K.</creator><creator>Adiconis, Xian</creator><creator>Dionne, Danielle</creator><creator>Mayweather, Brittany A.</creator><creator>Nguyen, Lan</creator><creator>Niziolek, Zachary</creator><creator>Ozek, Ceren</creator><creator>Butty, Vincent L.</creator><creator>Isserlin, Ruth</creator><creator>Buchanan, Sean M.</creator><creator>Levine, Stuart S.</creator><creator>Regev, Aviv</creator><creator>Bader, Gary D.</creator><creator>Levin, Joshua Z.</creator><creator>Rubin, Lee L.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2815-7558</orcidid><orcidid>https://orcid.org/0000-0002-8658-841X</orcidid><orcidid>https://orcid.org/0000-0002-8338-4323</orcidid><orcidid>https://orcid.org/0000-0003-2496-3154</orcidid><orcidid>https://orcid.org/0000-0003-1173-2429</orcidid><orcidid>https://orcid.org/0000-0003-0185-8861</orcidid><orcidid>https://orcid.org/0000-0002-0170-3598</orcidid></search><sort><creationdate>20191001</creationdate><title>Single-cell transcriptomic profiling of the aging mouse brain</title><author>Ximerakis, Methodios ; Lipnick, Scott L. ; Innes, Brendan T. ; Simmons, Sean K. ; Adiconis, Xian ; Dionne, Danielle ; Mayweather, Brittany A. ; Nguyen, Lan ; Niziolek, Zachary ; Ozek, Ceren ; Butty, Vincent L. ; Isserlin, Ruth ; Buchanan, Sean M. ; Levine, Stuart S. ; Regev, Aviv ; Bader, Gary D. ; Levin, Joshua Z. ; Rubin, Lee L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-28bc1a99f6b8f2a7127649d050bb666c77f3f7baaf619c8d065830c8bbf9d1813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>101/1</topic><topic>13/31</topic><topic>13/51</topic><topic>14/19</topic><topic>14/32</topic><topic>38/39</topic><topic>38/90</topic><topic>38/91</topic><topic>631/337/2019</topic><topic>631/378/2611</topic><topic>631/378/87</topic><topic>631/80</topic><topic>64/60</topic><topic>Aging</topic><topic>Aging (artificial)</topic><topic>Aging - genetics</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain</topic><topic>Brain - cytology</topic><topic>Brain - growth &amp; development</topic><topic>Brain cells</topic><topic>Cell Communication - genetics</topic><topic>Cell Lineage - genetics</topic><topic>Datasets</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation - genetics</topic><topic>Genetic aspects</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Nervous system</topic><topic>Neurobiology</topic><topic>Neurons - physiology</topic><topic>Neurosciences</topic><topic>Physiological aspects</topic><topic>Resource</topic><topic>Ribosomes - genetics</topic><topic>Single-Cell Analysis</topic><topic>Transcription</topic><topic>Transcriptome - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ximerakis, Methodios</creatorcontrib><creatorcontrib>Lipnick, Scott L.</creatorcontrib><creatorcontrib>Innes, Brendan T.</creatorcontrib><creatorcontrib>Simmons, Sean K.</creatorcontrib><creatorcontrib>Adiconis, Xian</creatorcontrib><creatorcontrib>Dionne, Danielle</creatorcontrib><creatorcontrib>Mayweather, Brittany A.</creatorcontrib><creatorcontrib>Nguyen, Lan</creatorcontrib><creatorcontrib>Niziolek, Zachary</creatorcontrib><creatorcontrib>Ozek, Ceren</creatorcontrib><creatorcontrib>Butty, Vincent L.</creatorcontrib><creatorcontrib>Isserlin, Ruth</creatorcontrib><creatorcontrib>Buchanan, Sean M.</creatorcontrib><creatorcontrib>Levine, Stuart S.</creatorcontrib><creatorcontrib>Regev, Aviv</creatorcontrib><creatorcontrib>Bader, Gary D.</creatorcontrib><creatorcontrib>Levin, Joshua Z.</creatorcontrib><creatorcontrib>Rubin, Lee L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ximerakis, Methodios</au><au>Lipnick, Scott L.</au><au>Innes, Brendan T.</au><au>Simmons, Sean K.</au><au>Adiconis, Xian</au><au>Dionne, Danielle</au><au>Mayweather, Brittany A.</au><au>Nguyen, Lan</au><au>Niziolek, Zachary</au><au>Ozek, Ceren</au><au>Butty, Vincent L.</au><au>Isserlin, Ruth</au><au>Buchanan, Sean M.</au><au>Levine, Stuart S.</au><au>Regev, Aviv</au><au>Bader, Gary D.</au><au>Levin, Joshua Z.</au><au>Rubin, Lee L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-cell transcriptomic profiling of the aging mouse brain</atitle><jtitle>Nature neuroscience</jtitle><stitle>Nat Neurosci</stitle><addtitle>Nat Neurosci</addtitle><date>2019-10-01</date><risdate>2019</risdate><volume>22</volume><issue>10</issue><spage>1696</spage><epage>1708</epage><pages>1696-1708</pages><issn>1097-6256</issn><eissn>1546-1726</eissn><abstract>The mammalian brain is complex, with multiple cell types performing a variety of diverse functions, but exactly how each cell type is affected in aging remains largely unknown. Here we performed a single-cell transcriptomic analysis of young and old mouse brains. We provide comprehensive datasets of aging-related genes, pathways and ligand–receptor interactions in nearly all brain cell types. Our analysis identified gene signatures that vary in a coordinated manner across cell types and gene sets that are regulated in a cell-type specific manner, even at times in opposite directions. These data reveal that aging, rather than inducing a universal program, drives a distinct transcriptional course in each cell population, and they highlight key molecular processes, including ribosome biogenesis, underlying brain aging. Overall, these large-scale datasets (accessible online at https://portals.broadinstitute.org/single_cell/study/aging-mouse-brain ) provide a resource for the neuroscience community that will facilitate additional discoveries directed towards understanding and modifying the aging process. A single-cell transcriptomic atlas of the aging mouse brain reveals coordinated and cell-type-specific aging signatures across multiple cell populations. Catalogs of aging-related genes, pathways and ligand–receptor interactions are reported.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>31551601</pmid><doi>10.1038/s41593-019-0491-3</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2815-7558</orcidid><orcidid>https://orcid.org/0000-0002-8658-841X</orcidid><orcidid>https://orcid.org/0000-0002-8338-4323</orcidid><orcidid>https://orcid.org/0000-0003-2496-3154</orcidid><orcidid>https://orcid.org/0000-0003-1173-2429</orcidid><orcidid>https://orcid.org/0000-0003-0185-8861</orcidid><orcidid>https://orcid.org/0000-0002-0170-3598</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-6256
ispartof Nature neuroscience, 2019-10, Vol.22 (10), p.1696-1708
issn 1097-6256
1546-1726
language eng
recordid cdi_proquest_miscellaneous_2297124779
source MEDLINE; Nature; SpringerLink Journals - AutoHoldings
subjects 101/1
13/31
13/51
14/19
14/32
38/39
38/90
38/91
631/337/2019
631/378/2611
631/378/87
631/80
64/60
Aging
Aging (artificial)
Aging - genetics
Animal Genetics and Genomics
Animals
Behavioral Sciences
Biological Techniques
Biomedical and Life Sciences
Biomedicine
Brain
Brain - cytology
Brain - growth & development
Brain cells
Cell Communication - genetics
Cell Lineage - genetics
Datasets
Gene Expression Profiling
Gene Expression Regulation - genetics
Genetic aspects
High-Throughput Nucleotide Sequencing
Male
Mice
Mice, Inbred C57BL
Nervous system
Neurobiology
Neurons - physiology
Neurosciences
Physiological aspects
Resource
Ribosomes - genetics
Single-Cell Analysis
Transcription
Transcriptome - genetics
title Single-cell transcriptomic profiling of the aging mouse brain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T18%3A20%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-cell%20transcriptomic%20profiling%20of%20the%20aging%20mouse%20brain&rft.jtitle=Nature%20neuroscience&rft.au=Ximerakis,%20Methodios&rft.date=2019-10-01&rft.volume=22&rft.issue=10&rft.spage=1696&rft.epage=1708&rft.pages=1696-1708&rft.issn=1097-6256&rft.eissn=1546-1726&rft_id=info:doi/10.1038/s41593-019-0491-3&rft_dat=%3Cgale_proqu%3EA600699000%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2296635476&rft_id=info:pmid/31551601&rft_galeid=A600699000&rfr_iscdi=true