Single-cell transcriptomic profiling of the aging mouse brain
The mammalian brain is complex, with multiple cell types performing a variety of diverse functions, but exactly how each cell type is affected in aging remains largely unknown. Here we performed a single-cell transcriptomic analysis of young and old mouse brains. We provide comprehensive datasets of...
Gespeichert in:
Veröffentlicht in: | Nature neuroscience 2019-10, Vol.22 (10), p.1696-1708 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1708 |
---|---|
container_issue | 10 |
container_start_page | 1696 |
container_title | Nature neuroscience |
container_volume | 22 |
creator | Ximerakis, Methodios Lipnick, Scott L. Innes, Brendan T. Simmons, Sean K. Adiconis, Xian Dionne, Danielle Mayweather, Brittany A. Nguyen, Lan Niziolek, Zachary Ozek, Ceren Butty, Vincent L. Isserlin, Ruth Buchanan, Sean M. Levine, Stuart S. Regev, Aviv Bader, Gary D. Levin, Joshua Z. Rubin, Lee L. |
description | The mammalian brain is complex, with multiple cell types performing a variety of diverse functions, but exactly how each cell type is affected in aging remains largely unknown. Here we performed a single-cell transcriptomic analysis of young and old mouse brains. We provide comprehensive datasets of aging-related genes, pathways and ligand–receptor interactions in nearly all brain cell types. Our analysis identified gene signatures that vary in a coordinated manner across cell types and gene sets that are regulated in a cell-type specific manner, even at times in opposite directions. These data reveal that aging, rather than inducing a universal program, drives a distinct transcriptional course in each cell population, and they highlight key molecular processes, including ribosome biogenesis, underlying brain aging. Overall, these large-scale datasets (accessible online at
https://portals.broadinstitute.org/single_cell/study/aging-mouse-brain
) provide a resource for the neuroscience community that will facilitate additional discoveries directed towards understanding and modifying the aging process.
A single-cell transcriptomic atlas of the aging mouse brain reveals coordinated and cell-type-specific aging signatures across multiple cell populations. Catalogs of aging-related genes, pathways and ligand–receptor interactions are reported. |
doi_str_mv | 10.1038/s41593-019-0491-3 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2297124779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A600699000</galeid><sourcerecordid>A600699000</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-28bc1a99f6b8f2a7127649d050bb666c77f3f7baaf619c8d065830c8bbf9d1813</originalsourceid><addsrcrecordid>eNp1kU9LHTEUxUNRqrX9AN2UATftIjaZTG4mCxcibRUEobbrkGSS6cj8eSYz0H577_Cs8kTJIgn53ZNz7yHkI2cnnIn6a6641IIyrimrNKfiDTnksgLKVQl7eGZaUSglHJB3Od8yxpSs9VtyILiUHBg_JKc33dj2gfrQ98Wc7Jh96jbzNHS-2KQpdj2-F1Ms5j-hsO16GaYlh8Il243vyX60fQ4fHvYj8vv7t1_nF_Tq-sfl-dkV9fjNTMvaeW61juDqWFrFSwWVbphkzgGAVyqKqJy1Ebj2dcNA1oL52rmoG15zcUQ-b3XR0t0S8myGLq-W7RjQjSlLjaKVUhrR42fo7bSkEd2tFICQlYInqrV9MN0YJ-zdr6LmDBgDrXFYSJ28QOFqAs5nGgOOJ-wWfNkpQGYOf-fWLjmby5ufuyzfsj5NOacQzSZ1g03_DGdmjdds4zUYr1njNQJrPj00t7ghNI8V__NEoNwCGZ_GNqSn7l9XvQesLauu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2296635476</pqid></control><display><type>article</type><title>Single-cell transcriptomic profiling of the aging mouse brain</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Ximerakis, Methodios ; Lipnick, Scott L. ; Innes, Brendan T. ; Simmons, Sean K. ; Adiconis, Xian ; Dionne, Danielle ; Mayweather, Brittany A. ; Nguyen, Lan ; Niziolek, Zachary ; Ozek, Ceren ; Butty, Vincent L. ; Isserlin, Ruth ; Buchanan, Sean M. ; Levine, Stuart S. ; Regev, Aviv ; Bader, Gary D. ; Levin, Joshua Z. ; Rubin, Lee L.</creator><creatorcontrib>Ximerakis, Methodios ; Lipnick, Scott L. ; Innes, Brendan T. ; Simmons, Sean K. ; Adiconis, Xian ; Dionne, Danielle ; Mayweather, Brittany A. ; Nguyen, Lan ; Niziolek, Zachary ; Ozek, Ceren ; Butty, Vincent L. ; Isserlin, Ruth ; Buchanan, Sean M. ; Levine, Stuart S. ; Regev, Aviv ; Bader, Gary D. ; Levin, Joshua Z. ; Rubin, Lee L.</creatorcontrib><description>The mammalian brain is complex, with multiple cell types performing a variety of diverse functions, but exactly how each cell type is affected in aging remains largely unknown. Here we performed a single-cell transcriptomic analysis of young and old mouse brains. We provide comprehensive datasets of aging-related genes, pathways and ligand–receptor interactions in nearly all brain cell types. Our analysis identified gene signatures that vary in a coordinated manner across cell types and gene sets that are regulated in a cell-type specific manner, even at times in opposite directions. These data reveal that aging, rather than inducing a universal program, drives a distinct transcriptional course in each cell population, and they highlight key molecular processes, including ribosome biogenesis, underlying brain aging. Overall, these large-scale datasets (accessible online at
https://portals.broadinstitute.org/single_cell/study/aging-mouse-brain
) provide a resource for the neuroscience community that will facilitate additional discoveries directed towards understanding and modifying the aging process.
A single-cell transcriptomic atlas of the aging mouse brain reveals coordinated and cell-type-specific aging signatures across multiple cell populations. Catalogs of aging-related genes, pathways and ligand–receptor interactions are reported.</description><identifier>ISSN: 1097-6256</identifier><identifier>EISSN: 1546-1726</identifier><identifier>DOI: 10.1038/s41593-019-0491-3</identifier><identifier>PMID: 31551601</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>101/1 ; 13/31 ; 13/51 ; 14/19 ; 14/32 ; 38/39 ; 38/90 ; 38/91 ; 631/337/2019 ; 631/378/2611 ; 631/378/87 ; 631/80 ; 64/60 ; Aging ; Aging (artificial) ; Aging - genetics ; Animal Genetics and Genomics ; Animals ; Behavioral Sciences ; Biological Techniques ; Biomedical and Life Sciences ; Biomedicine ; Brain ; Brain - cytology ; Brain - growth & development ; Brain cells ; Cell Communication - genetics ; Cell Lineage - genetics ; Datasets ; Gene Expression Profiling ; Gene Expression Regulation - genetics ; Genetic aspects ; High-Throughput Nucleotide Sequencing ; Male ; Mice ; Mice, Inbred C57BL ; Nervous system ; Neurobiology ; Neurons - physiology ; Neurosciences ; Physiological aspects ; Resource ; Ribosomes - genetics ; Single-Cell Analysis ; Transcription ; Transcriptome - genetics</subject><ispartof>Nature neuroscience, 2019-10, Vol.22 (10), p.1696-1708</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2019</rights><rights>COPYRIGHT 2019 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Oct 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c516t-28bc1a99f6b8f2a7127649d050bb666c77f3f7baaf619c8d065830c8bbf9d1813</citedby><cites>FETCH-LOGICAL-c516t-28bc1a99f6b8f2a7127649d050bb666c77f3f7baaf619c8d065830c8bbf9d1813</cites><orcidid>0000-0002-2815-7558 ; 0000-0002-8658-841X ; 0000-0002-8338-4323 ; 0000-0003-2496-3154 ; 0000-0003-1173-2429 ; 0000-0003-0185-8861 ; 0000-0002-0170-3598</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41593-019-0491-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41593-019-0491-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31551601$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ximerakis, Methodios</creatorcontrib><creatorcontrib>Lipnick, Scott L.</creatorcontrib><creatorcontrib>Innes, Brendan T.</creatorcontrib><creatorcontrib>Simmons, Sean K.</creatorcontrib><creatorcontrib>Adiconis, Xian</creatorcontrib><creatorcontrib>Dionne, Danielle</creatorcontrib><creatorcontrib>Mayweather, Brittany A.</creatorcontrib><creatorcontrib>Nguyen, Lan</creatorcontrib><creatorcontrib>Niziolek, Zachary</creatorcontrib><creatorcontrib>Ozek, Ceren</creatorcontrib><creatorcontrib>Butty, Vincent L.</creatorcontrib><creatorcontrib>Isserlin, Ruth</creatorcontrib><creatorcontrib>Buchanan, Sean M.</creatorcontrib><creatorcontrib>Levine, Stuart S.</creatorcontrib><creatorcontrib>Regev, Aviv</creatorcontrib><creatorcontrib>Bader, Gary D.</creatorcontrib><creatorcontrib>Levin, Joshua Z.</creatorcontrib><creatorcontrib>Rubin, Lee L.</creatorcontrib><title>Single-cell transcriptomic profiling of the aging mouse brain</title><title>Nature neuroscience</title><addtitle>Nat Neurosci</addtitle><addtitle>Nat Neurosci</addtitle><description>The mammalian brain is complex, with multiple cell types performing a variety of diverse functions, but exactly how each cell type is affected in aging remains largely unknown. Here we performed a single-cell transcriptomic analysis of young and old mouse brains. We provide comprehensive datasets of aging-related genes, pathways and ligand–receptor interactions in nearly all brain cell types. Our analysis identified gene signatures that vary in a coordinated manner across cell types and gene sets that are regulated in a cell-type specific manner, even at times in opposite directions. These data reveal that aging, rather than inducing a universal program, drives a distinct transcriptional course in each cell population, and they highlight key molecular processes, including ribosome biogenesis, underlying brain aging. Overall, these large-scale datasets (accessible online at
https://portals.broadinstitute.org/single_cell/study/aging-mouse-brain
) provide a resource for the neuroscience community that will facilitate additional discoveries directed towards understanding and modifying the aging process.
A single-cell transcriptomic atlas of the aging mouse brain reveals coordinated and cell-type-specific aging signatures across multiple cell populations. Catalogs of aging-related genes, pathways and ligand–receptor interactions are reported.</description><subject>101/1</subject><subject>13/31</subject><subject>13/51</subject><subject>14/19</subject><subject>14/32</subject><subject>38/39</subject><subject>38/90</subject><subject>38/91</subject><subject>631/337/2019</subject><subject>631/378/2611</subject><subject>631/378/87</subject><subject>631/80</subject><subject>64/60</subject><subject>Aging</subject><subject>Aging (artificial)</subject><subject>Aging - genetics</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain</subject><subject>Brain - cytology</subject><subject>Brain - growth & development</subject><subject>Brain cells</subject><subject>Cell Communication - genetics</subject><subject>Cell Lineage - genetics</subject><subject>Datasets</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation - genetics</subject><subject>Genetic aspects</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Nervous system</subject><subject>Neurobiology</subject><subject>Neurons - physiology</subject><subject>Neurosciences</subject><subject>Physiological aspects</subject><subject>Resource</subject><subject>Ribosomes - genetics</subject><subject>Single-Cell Analysis</subject><subject>Transcription</subject><subject>Transcriptome - genetics</subject><issn>1097-6256</issn><issn>1546-1726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kU9LHTEUxUNRqrX9AN2UATftIjaZTG4mCxcibRUEobbrkGSS6cj8eSYz0H577_Cs8kTJIgn53ZNz7yHkI2cnnIn6a6641IIyrimrNKfiDTnksgLKVQl7eGZaUSglHJB3Od8yxpSs9VtyILiUHBg_JKc33dj2gfrQ98Wc7Jh96jbzNHS-2KQpdj2-F1Ms5j-hsO16GaYlh8Il243vyX60fQ4fHvYj8vv7t1_nF_Tq-sfl-dkV9fjNTMvaeW61juDqWFrFSwWVbphkzgGAVyqKqJy1Ebj2dcNA1oL52rmoG15zcUQ-b3XR0t0S8myGLq-W7RjQjSlLjaKVUhrR42fo7bSkEd2tFICQlYInqrV9MN0YJ-zdr6LmDBgDrXFYSJ28QOFqAs5nGgOOJ-wWfNkpQGYOf-fWLjmby5ufuyzfsj5NOacQzSZ1g03_DGdmjdds4zUYr1njNQJrPj00t7ghNI8V__NEoNwCGZ_GNqSn7l9XvQesLauu</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Ximerakis, Methodios</creator><creator>Lipnick, Scott L.</creator><creator>Innes, Brendan T.</creator><creator>Simmons, Sean K.</creator><creator>Adiconis, Xian</creator><creator>Dionne, Danielle</creator><creator>Mayweather, Brittany A.</creator><creator>Nguyen, Lan</creator><creator>Niziolek, Zachary</creator><creator>Ozek, Ceren</creator><creator>Butty, Vincent L.</creator><creator>Isserlin, Ruth</creator><creator>Buchanan, Sean M.</creator><creator>Levine, Stuart S.</creator><creator>Regev, Aviv</creator><creator>Bader, Gary D.</creator><creator>Levin, Joshua Z.</creator><creator>Rubin, Lee L.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2815-7558</orcidid><orcidid>https://orcid.org/0000-0002-8658-841X</orcidid><orcidid>https://orcid.org/0000-0002-8338-4323</orcidid><orcidid>https://orcid.org/0000-0003-2496-3154</orcidid><orcidid>https://orcid.org/0000-0003-1173-2429</orcidid><orcidid>https://orcid.org/0000-0003-0185-8861</orcidid><orcidid>https://orcid.org/0000-0002-0170-3598</orcidid></search><sort><creationdate>20191001</creationdate><title>Single-cell transcriptomic profiling of the aging mouse brain</title><author>Ximerakis, Methodios ; Lipnick, Scott L. ; Innes, Brendan T. ; Simmons, Sean K. ; Adiconis, Xian ; Dionne, Danielle ; Mayweather, Brittany A. ; Nguyen, Lan ; Niziolek, Zachary ; Ozek, Ceren ; Butty, Vincent L. ; Isserlin, Ruth ; Buchanan, Sean M. ; Levine, Stuart S. ; Regev, Aviv ; Bader, Gary D. ; Levin, Joshua Z. ; Rubin, Lee L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-28bc1a99f6b8f2a7127649d050bb666c77f3f7baaf619c8d065830c8bbf9d1813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>101/1</topic><topic>13/31</topic><topic>13/51</topic><topic>14/19</topic><topic>14/32</topic><topic>38/39</topic><topic>38/90</topic><topic>38/91</topic><topic>631/337/2019</topic><topic>631/378/2611</topic><topic>631/378/87</topic><topic>631/80</topic><topic>64/60</topic><topic>Aging</topic><topic>Aging (artificial)</topic><topic>Aging - genetics</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain</topic><topic>Brain - cytology</topic><topic>Brain - growth & development</topic><topic>Brain cells</topic><topic>Cell Communication - genetics</topic><topic>Cell Lineage - genetics</topic><topic>Datasets</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation - genetics</topic><topic>Genetic aspects</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Nervous system</topic><topic>Neurobiology</topic><topic>Neurons - physiology</topic><topic>Neurosciences</topic><topic>Physiological aspects</topic><topic>Resource</topic><topic>Ribosomes - genetics</topic><topic>Single-Cell Analysis</topic><topic>Transcription</topic><topic>Transcriptome - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ximerakis, Methodios</creatorcontrib><creatorcontrib>Lipnick, Scott L.</creatorcontrib><creatorcontrib>Innes, Brendan T.</creatorcontrib><creatorcontrib>Simmons, Sean K.</creatorcontrib><creatorcontrib>Adiconis, Xian</creatorcontrib><creatorcontrib>Dionne, Danielle</creatorcontrib><creatorcontrib>Mayweather, Brittany A.</creatorcontrib><creatorcontrib>Nguyen, Lan</creatorcontrib><creatorcontrib>Niziolek, Zachary</creatorcontrib><creatorcontrib>Ozek, Ceren</creatorcontrib><creatorcontrib>Butty, Vincent L.</creatorcontrib><creatorcontrib>Isserlin, Ruth</creatorcontrib><creatorcontrib>Buchanan, Sean M.</creatorcontrib><creatorcontrib>Levine, Stuart S.</creatorcontrib><creatorcontrib>Regev, Aviv</creatorcontrib><creatorcontrib>Bader, Gary D.</creatorcontrib><creatorcontrib>Levin, Joshua Z.</creatorcontrib><creatorcontrib>Rubin, Lee L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ximerakis, Methodios</au><au>Lipnick, Scott L.</au><au>Innes, Brendan T.</au><au>Simmons, Sean K.</au><au>Adiconis, Xian</au><au>Dionne, Danielle</au><au>Mayweather, Brittany A.</au><au>Nguyen, Lan</au><au>Niziolek, Zachary</au><au>Ozek, Ceren</au><au>Butty, Vincent L.</au><au>Isserlin, Ruth</au><au>Buchanan, Sean M.</au><au>Levine, Stuart S.</au><au>Regev, Aviv</au><au>Bader, Gary D.</au><au>Levin, Joshua Z.</au><au>Rubin, Lee L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-cell transcriptomic profiling of the aging mouse brain</atitle><jtitle>Nature neuroscience</jtitle><stitle>Nat Neurosci</stitle><addtitle>Nat Neurosci</addtitle><date>2019-10-01</date><risdate>2019</risdate><volume>22</volume><issue>10</issue><spage>1696</spage><epage>1708</epage><pages>1696-1708</pages><issn>1097-6256</issn><eissn>1546-1726</eissn><abstract>The mammalian brain is complex, with multiple cell types performing a variety of diverse functions, but exactly how each cell type is affected in aging remains largely unknown. Here we performed a single-cell transcriptomic analysis of young and old mouse brains. We provide comprehensive datasets of aging-related genes, pathways and ligand–receptor interactions in nearly all brain cell types. Our analysis identified gene signatures that vary in a coordinated manner across cell types and gene sets that are regulated in a cell-type specific manner, even at times in opposite directions. These data reveal that aging, rather than inducing a universal program, drives a distinct transcriptional course in each cell population, and they highlight key molecular processes, including ribosome biogenesis, underlying brain aging. Overall, these large-scale datasets (accessible online at
https://portals.broadinstitute.org/single_cell/study/aging-mouse-brain
) provide a resource for the neuroscience community that will facilitate additional discoveries directed towards understanding and modifying the aging process.
A single-cell transcriptomic atlas of the aging mouse brain reveals coordinated and cell-type-specific aging signatures across multiple cell populations. Catalogs of aging-related genes, pathways and ligand–receptor interactions are reported.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>31551601</pmid><doi>10.1038/s41593-019-0491-3</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2815-7558</orcidid><orcidid>https://orcid.org/0000-0002-8658-841X</orcidid><orcidid>https://orcid.org/0000-0002-8338-4323</orcidid><orcidid>https://orcid.org/0000-0003-2496-3154</orcidid><orcidid>https://orcid.org/0000-0003-1173-2429</orcidid><orcidid>https://orcid.org/0000-0003-0185-8861</orcidid><orcidid>https://orcid.org/0000-0002-0170-3598</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1097-6256 |
ispartof | Nature neuroscience, 2019-10, Vol.22 (10), p.1696-1708 |
issn | 1097-6256 1546-1726 |
language | eng |
recordid | cdi_proquest_miscellaneous_2297124779 |
source | MEDLINE; Nature; SpringerLink Journals - AutoHoldings |
subjects | 101/1 13/31 13/51 14/19 14/32 38/39 38/90 38/91 631/337/2019 631/378/2611 631/378/87 631/80 64/60 Aging Aging (artificial) Aging - genetics Animal Genetics and Genomics Animals Behavioral Sciences Biological Techniques Biomedical and Life Sciences Biomedicine Brain Brain - cytology Brain - growth & development Brain cells Cell Communication - genetics Cell Lineage - genetics Datasets Gene Expression Profiling Gene Expression Regulation - genetics Genetic aspects High-Throughput Nucleotide Sequencing Male Mice Mice, Inbred C57BL Nervous system Neurobiology Neurons - physiology Neurosciences Physiological aspects Resource Ribosomes - genetics Single-Cell Analysis Transcription Transcriptome - genetics |
title | Single-cell transcriptomic profiling of the aging mouse brain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T18%3A20%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-cell%20transcriptomic%20profiling%20of%20the%20aging%20mouse%20brain&rft.jtitle=Nature%20neuroscience&rft.au=Ximerakis,%20Methodios&rft.date=2019-10-01&rft.volume=22&rft.issue=10&rft.spage=1696&rft.epage=1708&rft.pages=1696-1708&rft.issn=1097-6256&rft.eissn=1546-1726&rft_id=info:doi/10.1038/s41593-019-0491-3&rft_dat=%3Cgale_proqu%3EA600699000%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2296635476&rft_id=info:pmid/31551601&rft_galeid=A600699000&rfr_iscdi=true |