Highly Stretchable, Directionally Oriented Carbon Nanotube/PDMS Conductive Films with Enhanced Sensitivity as Wearable Strain Sensors

Recent interest in the fields of human motion monitoring, electronic skin, and human–machine interface technology demands strain sensors with high stretchability/compressibility (ε > 50%), high sensitivity (or gauge factor (GF > 100)), and long-lasting electromechanical compliance. However, cu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2019-10, Vol.11 (43), p.39560-39573
Hauptverfasser: Tas, Mehmet O, Baker, Mark A, Masteghin, Mateus G, Bentz, Jedidiah, Boxshall, Keir, Stolojan, Vlad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 39573
container_issue 43
container_start_page 39560
container_title ACS applied materials & interfaces
container_volume 11
creator Tas, Mehmet O
Baker, Mark A
Masteghin, Mateus G
Bentz, Jedidiah
Boxshall, Keir
Stolojan, Vlad
description Recent interest in the fields of human motion monitoring, electronic skin, and human–machine interface technology demands strain sensors with high stretchability/compressibility (ε > 50%), high sensitivity (or gauge factor (GF > 100)), and long-lasting electromechanical compliance. However, current metal- and semiconductor-based strain sensors have very low (ε < 5%) stretchability or low sensitivity (GF < 2), typically sacrificing the stretchability for high sensitivity. Composite elastomer sensors are a solution where the challenge is to improve the sensitivity to GF > 100. We propose a simple, low-cost fabrication of mechanically compliant, physically robust metallic carbon nanotube (CNT)-polydimethylsiloxane (PDMS) strain sensors. The process allows the alignment of CNTs within the PDMS elastomer, permitting directional sensing. Aligning CNTs horizontally (HA-CNTs) on the substrate before embedding in the PDMS reduces the number of CNT junctions and introduces scale-like features on the CNT film perpendicular to the tensile strain direction, resulting in improved sensitivity compared to vertically-aligned CNT-(VA-CNT)-PDMS strain sensors under tension. The CNT alignment and the scale-like features modulate the electron conduction pathway, affecting the electrical sensitivity. Resulting GF values are 594 at 15% and 65 at 50% strains for HA-CNT-PDMS and 326 at 25% and 52 at 50% strains for VA-CNT-PDMS sensors. Under compression, VA-CNT-PDMS sensors show more sensitivity to small-scale deformation than HA-CNT-PDMS sensors due to the CNT orientation and the continuous morphology of the film, demonstrating that the sensing ability can be improved by aligning the CNTs in certain directions. Furthermore, mechanical robustness and electromechanical durability are tested for over 6000 cycles up to 50% tensile and compressive strains, with good frequency responses with negligible hysteresis. Finally, both types of sensors are shown to detect small-scale human motions, successfully distinguishing various human motions with reaction and recovery times of as low as 130 ms and 0.5 s, respectively.
doi_str_mv 10.1021/acsami.9b13684
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2297124607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2297124607</sourcerecordid><originalsourceid>FETCH-LOGICAL-a370t-b14dc3d616f4a4df486c619fa33d25775d4260b47d3b092367174b813caded703</originalsourceid><addsrcrecordid>eNp1kEtvEzEUhS1ERUthyxJ5iRBJ_Ro7s0RpS5H6kkLV5ej6McTVjF1sDyg_oP-7DgndsbKl851zpQ-hD5TMKWH0BEyG0c9bTblciFfoiLZCzBasYa9f_kIcorc5PxAiOSPNG3TIadMwxcURerrwP9fDBq9KcsWsQQ_uCz71yZniY4ChRjfJu1CcxUtIOgZ8DSGWSbuT29OrFV7GYKcK_3b43A9jxn98WeOzsIZgamflQvY19WWDIeN7B2l7Y3sPfPgbx5TfoYMehuze799jdHd-9mN5Mbu8-fZ9-fVyBlyRMtNUWMOtpLIXIGwvFtJI2vbAuWWNUo0VTBItlOWatIxLRZXQC8oNWGcV4cfo0273McVfk8ulG302bhgguDjljrFWUSYkURWd71CTYs7J9d1j8iOkTUdJt1Xf7dR3e_W18HG_PenR2Rf8n-sKfN4Btdg9xClVvfl_a89OGo-v</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2297124607</pqid></control><display><type>article</type><title>Highly Stretchable, Directionally Oriented Carbon Nanotube/PDMS Conductive Films with Enhanced Sensitivity as Wearable Strain Sensors</title><source>MEDLINE</source><source>ACS Publications</source><creator>Tas, Mehmet O ; Baker, Mark A ; Masteghin, Mateus G ; Bentz, Jedidiah ; Boxshall, Keir ; Stolojan, Vlad</creator><creatorcontrib>Tas, Mehmet O ; Baker, Mark A ; Masteghin, Mateus G ; Bentz, Jedidiah ; Boxshall, Keir ; Stolojan, Vlad</creatorcontrib><description>Recent interest in the fields of human motion monitoring, electronic skin, and human–machine interface technology demands strain sensors with high stretchability/compressibility (ε &gt; 50%), high sensitivity (or gauge factor (GF &gt; 100)), and long-lasting electromechanical compliance. However, current metal- and semiconductor-based strain sensors have very low (ε &lt; 5%) stretchability or low sensitivity (GF &lt; 2), typically sacrificing the stretchability for high sensitivity. Composite elastomer sensors are a solution where the challenge is to improve the sensitivity to GF &gt; 100. We propose a simple, low-cost fabrication of mechanically compliant, physically robust metallic carbon nanotube (CNT)-polydimethylsiloxane (PDMS) strain sensors. The process allows the alignment of CNTs within the PDMS elastomer, permitting directional sensing. Aligning CNTs horizontally (HA-CNTs) on the substrate before embedding in the PDMS reduces the number of CNT junctions and introduces scale-like features on the CNT film perpendicular to the tensile strain direction, resulting in improved sensitivity compared to vertically-aligned CNT-(VA-CNT)-PDMS strain sensors under tension. The CNT alignment and the scale-like features modulate the electron conduction pathway, affecting the electrical sensitivity. Resulting GF values are 594 at 15% and 65 at 50% strains for HA-CNT-PDMS and 326 at 25% and 52 at 50% strains for VA-CNT-PDMS sensors. Under compression, VA-CNT-PDMS sensors show more sensitivity to small-scale deformation than HA-CNT-PDMS sensors due to the CNT orientation and the continuous morphology of the film, demonstrating that the sensing ability can be improved by aligning the CNTs in certain directions. Furthermore, mechanical robustness and electromechanical durability are tested for over 6000 cycles up to 50% tensile and compressive strains, with good frequency responses with negligible hysteresis. Finally, both types of sensors are shown to detect small-scale human motions, successfully distinguishing various human motions with reaction and recovery times of as low as 130 ms and 0.5 s, respectively.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.9b13684</identifier><identifier>PMID: 31552734</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Dimethylpolysiloxanes - chemistry ; Electric Conductivity ; Humans ; Membranes, Artificial ; Nanotubes, Carbon - chemistry ; Wearable Electronic Devices</subject><ispartof>ACS applied materials &amp; interfaces, 2019-10, Vol.11 (43), p.39560-39573</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a370t-b14dc3d616f4a4df486c619fa33d25775d4260b47d3b092367174b813caded703</citedby><cites>FETCH-LOGICAL-a370t-b14dc3d616f4a4df486c619fa33d25775d4260b47d3b092367174b813caded703</cites><orcidid>0000-0003-4688-1678 ; 0000-0002-5672-8311</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.9b13684$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.9b13684$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31552734$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tas, Mehmet O</creatorcontrib><creatorcontrib>Baker, Mark A</creatorcontrib><creatorcontrib>Masteghin, Mateus G</creatorcontrib><creatorcontrib>Bentz, Jedidiah</creatorcontrib><creatorcontrib>Boxshall, Keir</creatorcontrib><creatorcontrib>Stolojan, Vlad</creatorcontrib><title>Highly Stretchable, Directionally Oriented Carbon Nanotube/PDMS Conductive Films with Enhanced Sensitivity as Wearable Strain Sensors</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Recent interest in the fields of human motion monitoring, electronic skin, and human–machine interface technology demands strain sensors with high stretchability/compressibility (ε &gt; 50%), high sensitivity (or gauge factor (GF &gt; 100)), and long-lasting electromechanical compliance. However, current metal- and semiconductor-based strain sensors have very low (ε &lt; 5%) stretchability or low sensitivity (GF &lt; 2), typically sacrificing the stretchability for high sensitivity. Composite elastomer sensors are a solution where the challenge is to improve the sensitivity to GF &gt; 100. We propose a simple, low-cost fabrication of mechanically compliant, physically robust metallic carbon nanotube (CNT)-polydimethylsiloxane (PDMS) strain sensors. The process allows the alignment of CNTs within the PDMS elastomer, permitting directional sensing. Aligning CNTs horizontally (HA-CNTs) on the substrate before embedding in the PDMS reduces the number of CNT junctions and introduces scale-like features on the CNT film perpendicular to the tensile strain direction, resulting in improved sensitivity compared to vertically-aligned CNT-(VA-CNT)-PDMS strain sensors under tension. The CNT alignment and the scale-like features modulate the electron conduction pathway, affecting the electrical sensitivity. Resulting GF values are 594 at 15% and 65 at 50% strains for HA-CNT-PDMS and 326 at 25% and 52 at 50% strains for VA-CNT-PDMS sensors. Under compression, VA-CNT-PDMS sensors show more sensitivity to small-scale deformation than HA-CNT-PDMS sensors due to the CNT orientation and the continuous morphology of the film, demonstrating that the sensing ability can be improved by aligning the CNTs in certain directions. Furthermore, mechanical robustness and electromechanical durability are tested for over 6000 cycles up to 50% tensile and compressive strains, with good frequency responses with negligible hysteresis. Finally, both types of sensors are shown to detect small-scale human motions, successfully distinguishing various human motions with reaction and recovery times of as low as 130 ms and 0.5 s, respectively.</description><subject>Dimethylpolysiloxanes - chemistry</subject><subject>Electric Conductivity</subject><subject>Humans</subject><subject>Membranes, Artificial</subject><subject>Nanotubes, Carbon - chemistry</subject><subject>Wearable Electronic Devices</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEtvEzEUhS1ERUthyxJ5iRBJ_Ro7s0RpS5H6kkLV5ej6McTVjF1sDyg_oP-7DgndsbKl851zpQ-hD5TMKWH0BEyG0c9bTblciFfoiLZCzBasYa9f_kIcorc5PxAiOSPNG3TIadMwxcURerrwP9fDBq9KcsWsQQ_uCz71yZniY4ChRjfJu1CcxUtIOgZ8DSGWSbuT29OrFV7GYKcK_3b43A9jxn98WeOzsIZgamflQvY19WWDIeN7B2l7Y3sPfPgbx5TfoYMehuze799jdHd-9mN5Mbu8-fZ9-fVyBlyRMtNUWMOtpLIXIGwvFtJI2vbAuWWNUo0VTBItlOWatIxLRZXQC8oNWGcV4cfo0273McVfk8ulG302bhgguDjljrFWUSYkURWd71CTYs7J9d1j8iOkTUdJt1Xf7dR3e_W18HG_PenR2Rf8n-sKfN4Btdg9xClVvfl_a89OGo-v</recordid><startdate>20191030</startdate><enddate>20191030</enddate><creator>Tas, Mehmet O</creator><creator>Baker, Mark A</creator><creator>Masteghin, Mateus G</creator><creator>Bentz, Jedidiah</creator><creator>Boxshall, Keir</creator><creator>Stolojan, Vlad</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4688-1678</orcidid><orcidid>https://orcid.org/0000-0002-5672-8311</orcidid></search><sort><creationdate>20191030</creationdate><title>Highly Stretchable, Directionally Oriented Carbon Nanotube/PDMS Conductive Films with Enhanced Sensitivity as Wearable Strain Sensors</title><author>Tas, Mehmet O ; Baker, Mark A ; Masteghin, Mateus G ; Bentz, Jedidiah ; Boxshall, Keir ; Stolojan, Vlad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a370t-b14dc3d616f4a4df486c619fa33d25775d4260b47d3b092367174b813caded703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Dimethylpolysiloxanes - chemistry</topic><topic>Electric Conductivity</topic><topic>Humans</topic><topic>Membranes, Artificial</topic><topic>Nanotubes, Carbon - chemistry</topic><topic>Wearable Electronic Devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tas, Mehmet O</creatorcontrib><creatorcontrib>Baker, Mark A</creatorcontrib><creatorcontrib>Masteghin, Mateus G</creatorcontrib><creatorcontrib>Bentz, Jedidiah</creatorcontrib><creatorcontrib>Boxshall, Keir</creatorcontrib><creatorcontrib>Stolojan, Vlad</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tas, Mehmet O</au><au>Baker, Mark A</au><au>Masteghin, Mateus G</au><au>Bentz, Jedidiah</au><au>Boxshall, Keir</au><au>Stolojan, Vlad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Stretchable, Directionally Oriented Carbon Nanotube/PDMS Conductive Films with Enhanced Sensitivity as Wearable Strain Sensors</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2019-10-30</date><risdate>2019</risdate><volume>11</volume><issue>43</issue><spage>39560</spage><epage>39573</epage><pages>39560-39573</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Recent interest in the fields of human motion monitoring, electronic skin, and human–machine interface technology demands strain sensors with high stretchability/compressibility (ε &gt; 50%), high sensitivity (or gauge factor (GF &gt; 100)), and long-lasting electromechanical compliance. However, current metal- and semiconductor-based strain sensors have very low (ε &lt; 5%) stretchability or low sensitivity (GF &lt; 2), typically sacrificing the stretchability for high sensitivity. Composite elastomer sensors are a solution where the challenge is to improve the sensitivity to GF &gt; 100. We propose a simple, low-cost fabrication of mechanically compliant, physically robust metallic carbon nanotube (CNT)-polydimethylsiloxane (PDMS) strain sensors. The process allows the alignment of CNTs within the PDMS elastomer, permitting directional sensing. Aligning CNTs horizontally (HA-CNTs) on the substrate before embedding in the PDMS reduces the number of CNT junctions and introduces scale-like features on the CNT film perpendicular to the tensile strain direction, resulting in improved sensitivity compared to vertically-aligned CNT-(VA-CNT)-PDMS strain sensors under tension. The CNT alignment and the scale-like features modulate the electron conduction pathway, affecting the electrical sensitivity. Resulting GF values are 594 at 15% and 65 at 50% strains for HA-CNT-PDMS and 326 at 25% and 52 at 50% strains for VA-CNT-PDMS sensors. Under compression, VA-CNT-PDMS sensors show more sensitivity to small-scale deformation than HA-CNT-PDMS sensors due to the CNT orientation and the continuous morphology of the film, demonstrating that the sensing ability can be improved by aligning the CNTs in certain directions. Furthermore, mechanical robustness and electromechanical durability are tested for over 6000 cycles up to 50% tensile and compressive strains, with good frequency responses with negligible hysteresis. Finally, both types of sensors are shown to detect small-scale human motions, successfully distinguishing various human motions with reaction and recovery times of as low as 130 ms and 0.5 s, respectively.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31552734</pmid><doi>10.1021/acsami.9b13684</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4688-1678</orcidid><orcidid>https://orcid.org/0000-0002-5672-8311</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2019-10, Vol.11 (43), p.39560-39573
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2297124607
source MEDLINE; ACS Publications
subjects Dimethylpolysiloxanes - chemistry
Electric Conductivity
Humans
Membranes, Artificial
Nanotubes, Carbon - chemistry
Wearable Electronic Devices
title Highly Stretchable, Directionally Oriented Carbon Nanotube/PDMS Conductive Films with Enhanced Sensitivity as Wearable Strain Sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A59%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Stretchable,%20Directionally%20Oriented%20Carbon%20Nanotube/PDMS%20Conductive%20Films%20with%20Enhanced%20Sensitivity%20as%20Wearable%20Strain%20Sensors&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Tas,%20Mehmet%20O&rft.date=2019-10-30&rft.volume=11&rft.issue=43&rft.spage=39560&rft.epage=39573&rft.pages=39560-39573&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.9b13684&rft_dat=%3Cproquest_cross%3E2297124607%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2297124607&rft_id=info:pmid/31552734&rfr_iscdi=true