Mechanism of Single-Photon Upconversion Photoluminescence in All-Inorganic Perovskite Nanocrystals: The Role of Self-Trapped Excitons

The efficient single-photon upconversion photoluminescence (UCPL) feature of lead halide perovskite semiconductors makes it promising for developing laser cooling devices. This is an attractive potential application, but the underlying physics still remains unclear so far. By using the all-inorganic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2019-10, Vol.10 (20), p.5989-5996
Hauptverfasser: Ma, Xiaoman, Pan, Fang, Li, Haoqi, Shen, Peng, Ma, Chao, Zhang, Lei, Niu, Haibo, Zhu, Youzhang, Xu, Shijie, Ye, Honggang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5996
container_issue 20
container_start_page 5989
container_title The journal of physical chemistry letters
container_volume 10
creator Ma, Xiaoman
Pan, Fang
Li, Haoqi
Shen, Peng
Ma, Chao
Zhang, Lei
Niu, Haibo
Zhu, Youzhang
Xu, Shijie
Ye, Honggang
description The efficient single-photon upconversion photoluminescence (UCPL) feature of lead halide perovskite semiconductors makes it promising for developing laser cooling devices. This is an attractive potential application, but the underlying physics still remains unclear so far. By using the all-inorganic CsPbX3 (X = Br, I) nanocrystal samples, this phenomenon was investigated by photoluminescence (PL) and time-resolved PL under different temperatures and various excitation conditions. A broad emission band located at the low-energy side of the free exciton (FE) peak was detected and deduced to be from the self-trapped exciton (STE). The lifetime of STE emission was found to be 171 ns at 10 K, much longer than that of FE. The UCPL phenomenon was then attributed to thermal activation of transformation from STEs to FEs, and the energy barrier was derived to be 103.7 meV for CsPbBr3 and 45.2 meV for CsPb­(Br/I)3, respectively. The transformation also can be seen from the fluorescence decay processes.
doi_str_mv 10.1021/acs.jpclett.9b02289
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2296665647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2296665647</sourcerecordid><originalsourceid>FETCH-LOGICAL-a322t-41c33564598ef0d2bf8860c088198c81fd8cf0b51b1381f367ee8335e41254843</originalsourceid><addsrcrecordid>eNp9UMtOAjEUnRhNRPQL3HTpZqDtvDruCEElQSUK62am3IFipx3bGSIf4H9bgYUrV_d1HrknCG4JHhBMybAQbrBthIK2HeQlppTlZ0GP5DELM8KS8z_9ZXDl3BbjNMcs6wXfzyA2hZauRqZC71KvFYTzjWmNRstGGL0D66QfDjvV1VKDE6AFIKnRSKlwqo1dewWB5mDNzn3IFtBLoY2we9cWyt2jxQbQm1FwsABVhQtbNA2s0ORLSO_kroOLyiPh5lT7wfJhshg_hbPXx-l4NAuLiNI2jImIoiSNk5xBhVe0rBhLscCMkZwJRqoVExUuE1KSyE9RmgEwz4CY0CRmcdQP7o66jTWfHbiW19J_o1ShwXSOU5qnaeodMg-NjlBhjXMWKt5YWRd2zwnmv6FzHzo_hc5PoXvW8Mg6HE1ntX_nX8YPpNeKYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2296665647</pqid></control><display><type>article</type><title>Mechanism of Single-Photon Upconversion Photoluminescence in All-Inorganic Perovskite Nanocrystals: The Role of Self-Trapped Excitons</title><source>American Chemical Society Journals</source><creator>Ma, Xiaoman ; Pan, Fang ; Li, Haoqi ; Shen, Peng ; Ma, Chao ; Zhang, Lei ; Niu, Haibo ; Zhu, Youzhang ; Xu, Shijie ; Ye, Honggang</creator><creatorcontrib>Ma, Xiaoman ; Pan, Fang ; Li, Haoqi ; Shen, Peng ; Ma, Chao ; Zhang, Lei ; Niu, Haibo ; Zhu, Youzhang ; Xu, Shijie ; Ye, Honggang</creatorcontrib><description>The efficient single-photon upconversion photoluminescence (UCPL) feature of lead halide perovskite semiconductors makes it promising for developing laser cooling devices. This is an attractive potential application, but the underlying physics still remains unclear so far. By using the all-inorganic CsPbX3 (X = Br, I) nanocrystal samples, this phenomenon was investigated by photoluminescence (PL) and time-resolved PL under different temperatures and various excitation conditions. A broad emission band located at the low-energy side of the free exciton (FE) peak was detected and deduced to be from the self-trapped exciton (STE). The lifetime of STE emission was found to be 171 ns at 10 K, much longer than that of FE. The UCPL phenomenon was then attributed to thermal activation of transformation from STEs to FEs, and the energy barrier was derived to be 103.7 meV for CsPbBr3 and 45.2 meV for CsPb­(Br/I)3, respectively. The transformation also can be seen from the fluorescence decay processes.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.9b02289</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>The journal of physical chemistry letters, 2019-10, Vol.10 (20), p.5989-5996</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a322t-41c33564598ef0d2bf8860c088198c81fd8cf0b51b1381f367ee8335e41254843</citedby><cites>FETCH-LOGICAL-a322t-41c33564598ef0d2bf8860c088198c81fd8cf0b51b1381f367ee8335e41254843</cites><orcidid>0000-0002-0531-9497 ; 0000-0002-5643-5914 ; 0000-0001-6522-5778</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.9b02289$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.9b02289$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Ma, Xiaoman</creatorcontrib><creatorcontrib>Pan, Fang</creatorcontrib><creatorcontrib>Li, Haoqi</creatorcontrib><creatorcontrib>Shen, Peng</creatorcontrib><creatorcontrib>Ma, Chao</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Niu, Haibo</creatorcontrib><creatorcontrib>Zhu, Youzhang</creatorcontrib><creatorcontrib>Xu, Shijie</creatorcontrib><creatorcontrib>Ye, Honggang</creatorcontrib><title>Mechanism of Single-Photon Upconversion Photoluminescence in All-Inorganic Perovskite Nanocrystals: The Role of Self-Trapped Excitons</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>The efficient single-photon upconversion photoluminescence (UCPL) feature of lead halide perovskite semiconductors makes it promising for developing laser cooling devices. This is an attractive potential application, but the underlying physics still remains unclear so far. By using the all-inorganic CsPbX3 (X = Br, I) nanocrystal samples, this phenomenon was investigated by photoluminescence (PL) and time-resolved PL under different temperatures and various excitation conditions. A broad emission band located at the low-energy side of the free exciton (FE) peak was detected and deduced to be from the self-trapped exciton (STE). The lifetime of STE emission was found to be 171 ns at 10 K, much longer than that of FE. The UCPL phenomenon was then attributed to thermal activation of transformation from STEs to FEs, and the energy barrier was derived to be 103.7 meV for CsPbBr3 and 45.2 meV for CsPb­(Br/I)3, respectively. The transformation also can be seen from the fluorescence decay processes.</description><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOAjEUnRhNRPQL3HTpZqDtvDruCEElQSUK62am3IFipx3bGSIf4H9bgYUrV_d1HrknCG4JHhBMybAQbrBthIK2HeQlppTlZ0GP5DELM8KS8z_9ZXDl3BbjNMcs6wXfzyA2hZauRqZC71KvFYTzjWmNRstGGL0D66QfDjvV1VKDE6AFIKnRSKlwqo1dewWB5mDNzn3IFtBLoY2we9cWyt2jxQbQm1FwsABVhQtbNA2s0ORLSO_kroOLyiPh5lT7wfJhshg_hbPXx-l4NAuLiNI2jImIoiSNk5xBhVe0rBhLscCMkZwJRqoVExUuE1KSyE9RmgEwz4CY0CRmcdQP7o66jTWfHbiW19J_o1ShwXSOU5qnaeodMg-NjlBhjXMWKt5YWRd2zwnmv6FzHzo_hc5PoXvW8Mg6HE1ntX_nX8YPpNeKYA</recordid><startdate>20191017</startdate><enddate>20191017</enddate><creator>Ma, Xiaoman</creator><creator>Pan, Fang</creator><creator>Li, Haoqi</creator><creator>Shen, Peng</creator><creator>Ma, Chao</creator><creator>Zhang, Lei</creator><creator>Niu, Haibo</creator><creator>Zhu, Youzhang</creator><creator>Xu, Shijie</creator><creator>Ye, Honggang</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0531-9497</orcidid><orcidid>https://orcid.org/0000-0002-5643-5914</orcidid><orcidid>https://orcid.org/0000-0001-6522-5778</orcidid></search><sort><creationdate>20191017</creationdate><title>Mechanism of Single-Photon Upconversion Photoluminescence in All-Inorganic Perovskite Nanocrystals: The Role of Self-Trapped Excitons</title><author>Ma, Xiaoman ; Pan, Fang ; Li, Haoqi ; Shen, Peng ; Ma, Chao ; Zhang, Lei ; Niu, Haibo ; Zhu, Youzhang ; Xu, Shijie ; Ye, Honggang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a322t-41c33564598ef0d2bf8860c088198c81fd8cf0b51b1381f367ee8335e41254843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Xiaoman</creatorcontrib><creatorcontrib>Pan, Fang</creatorcontrib><creatorcontrib>Li, Haoqi</creatorcontrib><creatorcontrib>Shen, Peng</creatorcontrib><creatorcontrib>Ma, Chao</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Niu, Haibo</creatorcontrib><creatorcontrib>Zhu, Youzhang</creatorcontrib><creatorcontrib>Xu, Shijie</creatorcontrib><creatorcontrib>Ye, Honggang</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Xiaoman</au><au>Pan, Fang</au><au>Li, Haoqi</au><au>Shen, Peng</au><au>Ma, Chao</au><au>Zhang, Lei</au><au>Niu, Haibo</au><au>Zhu, Youzhang</au><au>Xu, Shijie</au><au>Ye, Honggang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of Single-Photon Upconversion Photoluminescence in All-Inorganic Perovskite Nanocrystals: The Role of Self-Trapped Excitons</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2019-10-17</date><risdate>2019</risdate><volume>10</volume><issue>20</issue><spage>5989</spage><epage>5996</epage><pages>5989-5996</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>The efficient single-photon upconversion photoluminescence (UCPL) feature of lead halide perovskite semiconductors makes it promising for developing laser cooling devices. This is an attractive potential application, but the underlying physics still remains unclear so far. By using the all-inorganic CsPbX3 (X = Br, I) nanocrystal samples, this phenomenon was investigated by photoluminescence (PL) and time-resolved PL under different temperatures and various excitation conditions. A broad emission band located at the low-energy side of the free exciton (FE) peak was detected and deduced to be from the self-trapped exciton (STE). The lifetime of STE emission was found to be 171 ns at 10 K, much longer than that of FE. The UCPL phenomenon was then attributed to thermal activation of transformation from STEs to FEs, and the energy barrier was derived to be 103.7 meV for CsPbBr3 and 45.2 meV for CsPb­(Br/I)3, respectively. The transformation also can be seen from the fluorescence decay processes.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpclett.9b02289</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0531-9497</orcidid><orcidid>https://orcid.org/0000-0002-5643-5914</orcidid><orcidid>https://orcid.org/0000-0001-6522-5778</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2019-10, Vol.10 (20), p.5989-5996
issn 1948-7185
1948-7185
language eng
recordid cdi_proquest_miscellaneous_2296665647
source American Chemical Society Journals
title Mechanism of Single-Photon Upconversion Photoluminescence in All-Inorganic Perovskite Nanocrystals: The Role of Self-Trapped Excitons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T02%3A32%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20Single-Photon%20Upconversion%20Photoluminescence%20in%20All-Inorganic%20Perovskite%20Nanocrystals:%20The%20Role%20of%20Self-Trapped%20Excitons&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Ma,%20Xiaoman&rft.date=2019-10-17&rft.volume=10&rft.issue=20&rft.spage=5989&rft.epage=5996&rft.pages=5989-5996&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.9b02289&rft_dat=%3Cproquest_cross%3E2296665647%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2296665647&rft_id=info:pmid/&rfr_iscdi=true