Interfacial States and Fano–Feshbach Resonance in Graphene–Silicon Vertical Junction

Interfacial quantum states are drawing tremendous attention recently because of their importance in design of low-dimensional quantum heterostructures with desired charge, spin, or topological properties. Although most studies of the interfacial exchange interactions were mainly performed across the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2019-10, Vol.19 (10), p.6765-6771
Hauptverfasser: Tsai, Shin-Hung, Lei, Sidong, Zhu, Xiaodan, Tsai, Shiao-Po, Yin, Gen, Che, Xiaoyu, Deng, Peng, Ng, Jimmy, Zhang, Xiang, Lin, Wei-Hsiang, Jin, Zehua, Qasem, Hussam, Zhou, Zhongpo, Vajtai, Robert, Yeh, Nai-Chang, Ajayan, Pulickel, Xie, Ya-Hong, Wang, Kang L
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6771
container_issue 10
container_start_page 6765
container_title Nano letters
container_volume 19
creator Tsai, Shin-Hung
Lei, Sidong
Zhu, Xiaodan
Tsai, Shiao-Po
Yin, Gen
Che, Xiaoyu
Deng, Peng
Ng, Jimmy
Zhang, Xiang
Lin, Wei-Hsiang
Jin, Zehua
Qasem, Hussam
Zhou, Zhongpo
Vajtai, Robert
Yeh, Nai-Chang
Ajayan, Pulickel
Xie, Ya-Hong
Wang, Kang L
description Interfacial quantum states are drawing tremendous attention recently because of their importance in design of low-dimensional quantum heterostructures with desired charge, spin, or topological properties. Although most studies of the interfacial exchange interactions were mainly performed across the interface vertically, the lateral transport nowadays is still a major experimental method to probe these interactions indirectly. In this Letter, we fabricated a graphene and hydrogen passivated silicon interface to study the interfacial exchange processes. For the first time we found and confirmed a novel interfacial quantum state, which is specific to the 2D–3D interface. The vertically propagating electrons from silicon to graphene result in electron oscillation states at the 2D–3D interface. A harmonic oscillator model is used to explain this interfacial state. In addition, the interaction between this interfacial state (discrete energy spectrum) and the lateral band structure of graphene (continuous energy spectrum) results in Fano–Feshbach resonance. Our results show that the conventional description of the interfacial interaction in low-dimensional systems is valid only in considering the lateral band structure and its density-of-states and is incomplete for the ease of vertical transport. Our experimental observation and theoretical explanation provide more insightful understanding of various interfacial effects in low-dimensional materials, such as proximity effect, quantum tunneling, etc. More important, the Fano–Feshbach resonance may be used to realize all solid-state and scalable quantum interferometers.
doi_str_mv 10.1021/acs.nanolett.9b01658
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2296664063</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2296664063</sourcerecordid><originalsourceid>FETCH-LOGICAL-a394t-55a7853decc4ad89c9e979fa973503d0f13baa6e3ec62c1121af522e2abb06ea3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwBwhlyabFj9itl6iipagSEgXELpo4EzVV6hTbWbDjH_hDvgRXfSxZjRfn3hkfQq4ZHTDK2R0YP7BgmxpDGOicMiVHJ6TLpKB9pTU_Pb5HaYdceL-ilGoh6TnpCCZTqSnrko-ZDehKMBXUySJAQJ-ALZJJbP79_pmgX-ZglskL-iZuM5hUNpk62CzRYgQWVV2Zxibv6EJlYsdTa02oGntJzkqoPV7tZ4-8TR5ex4_9-fN0Nr6f90HoNPSlhOFIigKNSaEYaaNRD3UJehgvFQUtmcgBFAo0ihvGOINSco4c8pwqBNEjt7vejWs-W_QhW1feYF2Dxab1GedaKZVSJSKa7lDjGu8dltnGVWtwXxmj2dZpFp1mB6fZ3mmM3ew3tPkai2PoIDECdAds46umdTZ--P_OP3isiX8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2296664063</pqid></control><display><type>article</type><title>Interfacial States and Fano–Feshbach Resonance in Graphene–Silicon Vertical Junction</title><source>ACS Publications</source><creator>Tsai, Shin-Hung ; Lei, Sidong ; Zhu, Xiaodan ; Tsai, Shiao-Po ; Yin, Gen ; Che, Xiaoyu ; Deng, Peng ; Ng, Jimmy ; Zhang, Xiang ; Lin, Wei-Hsiang ; Jin, Zehua ; Qasem, Hussam ; Zhou, Zhongpo ; Vajtai, Robert ; Yeh, Nai-Chang ; Ajayan, Pulickel ; Xie, Ya-Hong ; Wang, Kang L</creator><creatorcontrib>Tsai, Shin-Hung ; Lei, Sidong ; Zhu, Xiaodan ; Tsai, Shiao-Po ; Yin, Gen ; Che, Xiaoyu ; Deng, Peng ; Ng, Jimmy ; Zhang, Xiang ; Lin, Wei-Hsiang ; Jin, Zehua ; Qasem, Hussam ; Zhou, Zhongpo ; Vajtai, Robert ; Yeh, Nai-Chang ; Ajayan, Pulickel ; Xie, Ya-Hong ; Wang, Kang L</creatorcontrib><description>Interfacial quantum states are drawing tremendous attention recently because of their importance in design of low-dimensional quantum heterostructures with desired charge, spin, or topological properties. Although most studies of the interfacial exchange interactions were mainly performed across the interface vertically, the lateral transport nowadays is still a major experimental method to probe these interactions indirectly. In this Letter, we fabricated a graphene and hydrogen passivated silicon interface to study the interfacial exchange processes. For the first time we found and confirmed a novel interfacial quantum state, which is specific to the 2D–3D interface. The vertically propagating electrons from silicon to graphene result in electron oscillation states at the 2D–3D interface. A harmonic oscillator model is used to explain this interfacial state. In addition, the interaction between this interfacial state (discrete energy spectrum) and the lateral band structure of graphene (continuous energy spectrum) results in Fano–Feshbach resonance. Our results show that the conventional description of the interfacial interaction in low-dimensional systems is valid only in considering the lateral band structure and its density-of-states and is incomplete for the ease of vertical transport. Our experimental observation and theoretical explanation provide more insightful understanding of various interfacial effects in low-dimensional materials, such as proximity effect, quantum tunneling, etc. More important, the Fano–Feshbach resonance may be used to realize all solid-state and scalable quantum interferometers.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.9b01658</identifier><identifier>PMID: 31545901</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Nano letters, 2019-10, Vol.19 (10), p.6765-6771</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a394t-55a7853decc4ad89c9e979fa973503d0f13baa6e3ec62c1121af522e2abb06ea3</citedby><cites>FETCH-LOGICAL-a394t-55a7853decc4ad89c9e979fa973503d0f13baa6e3ec62c1121af522e2abb06ea3</cites><orcidid>0000-0002-3942-8827 ; 0000-0001-8323-7860 ; 0000-0003-0971-4280 ; 0000-0001-9129-2202 ; 0000-0003-1985-0446 ; 0000-0001-6024-040X ; 0000-0002-1826-419X ; 0000-0003-4004-5185</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.9b01658$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.9b01658$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31545901$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsai, Shin-Hung</creatorcontrib><creatorcontrib>Lei, Sidong</creatorcontrib><creatorcontrib>Zhu, Xiaodan</creatorcontrib><creatorcontrib>Tsai, Shiao-Po</creatorcontrib><creatorcontrib>Yin, Gen</creatorcontrib><creatorcontrib>Che, Xiaoyu</creatorcontrib><creatorcontrib>Deng, Peng</creatorcontrib><creatorcontrib>Ng, Jimmy</creatorcontrib><creatorcontrib>Zhang, Xiang</creatorcontrib><creatorcontrib>Lin, Wei-Hsiang</creatorcontrib><creatorcontrib>Jin, Zehua</creatorcontrib><creatorcontrib>Qasem, Hussam</creatorcontrib><creatorcontrib>Zhou, Zhongpo</creatorcontrib><creatorcontrib>Vajtai, Robert</creatorcontrib><creatorcontrib>Yeh, Nai-Chang</creatorcontrib><creatorcontrib>Ajayan, Pulickel</creatorcontrib><creatorcontrib>Xie, Ya-Hong</creatorcontrib><creatorcontrib>Wang, Kang L</creatorcontrib><title>Interfacial States and Fano–Feshbach Resonance in Graphene–Silicon Vertical Junction</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Interfacial quantum states are drawing tremendous attention recently because of their importance in design of low-dimensional quantum heterostructures with desired charge, spin, or topological properties. Although most studies of the interfacial exchange interactions were mainly performed across the interface vertically, the lateral transport nowadays is still a major experimental method to probe these interactions indirectly. In this Letter, we fabricated a graphene and hydrogen passivated silicon interface to study the interfacial exchange processes. For the first time we found and confirmed a novel interfacial quantum state, which is specific to the 2D–3D interface. The vertically propagating electrons from silicon to graphene result in electron oscillation states at the 2D–3D interface. A harmonic oscillator model is used to explain this interfacial state. In addition, the interaction between this interfacial state (discrete energy spectrum) and the lateral band structure of graphene (continuous energy spectrum) results in Fano–Feshbach resonance. Our results show that the conventional description of the interfacial interaction in low-dimensional systems is valid only in considering the lateral band structure and its density-of-states and is incomplete for the ease of vertical transport. Our experimental observation and theoretical explanation provide more insightful understanding of various interfacial effects in low-dimensional materials, such as proximity effect, quantum tunneling, etc. More important, the Fano–Feshbach resonance may be used to realize all solid-state and scalable quantum interferometers.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EoqXwBwhlyabFj9itl6iipagSEgXELpo4EzVV6hTbWbDjH_hDvgRXfSxZjRfn3hkfQq4ZHTDK2R0YP7BgmxpDGOicMiVHJ6TLpKB9pTU_Pb5HaYdceL-ilGoh6TnpCCZTqSnrko-ZDehKMBXUySJAQJ-ALZJJbP79_pmgX-ZglskL-iZuM5hUNpk62CzRYgQWVV2Zxibv6EJlYsdTa02oGntJzkqoPV7tZ4-8TR5ex4_9-fN0Nr6f90HoNPSlhOFIigKNSaEYaaNRD3UJehgvFQUtmcgBFAo0ihvGOINSco4c8pwqBNEjt7vejWs-W_QhW1feYF2Dxab1GedaKZVSJSKa7lDjGu8dltnGVWtwXxmj2dZpFp1mB6fZ3mmM3ew3tPkai2PoIDECdAds46umdTZ--P_OP3isiX8</recordid><startdate>20191009</startdate><enddate>20191009</enddate><creator>Tsai, Shin-Hung</creator><creator>Lei, Sidong</creator><creator>Zhu, Xiaodan</creator><creator>Tsai, Shiao-Po</creator><creator>Yin, Gen</creator><creator>Che, Xiaoyu</creator><creator>Deng, Peng</creator><creator>Ng, Jimmy</creator><creator>Zhang, Xiang</creator><creator>Lin, Wei-Hsiang</creator><creator>Jin, Zehua</creator><creator>Qasem, Hussam</creator><creator>Zhou, Zhongpo</creator><creator>Vajtai, Robert</creator><creator>Yeh, Nai-Chang</creator><creator>Ajayan, Pulickel</creator><creator>Xie, Ya-Hong</creator><creator>Wang, Kang L</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3942-8827</orcidid><orcidid>https://orcid.org/0000-0001-8323-7860</orcidid><orcidid>https://orcid.org/0000-0003-0971-4280</orcidid><orcidid>https://orcid.org/0000-0001-9129-2202</orcidid><orcidid>https://orcid.org/0000-0003-1985-0446</orcidid><orcidid>https://orcid.org/0000-0001-6024-040X</orcidid><orcidid>https://orcid.org/0000-0002-1826-419X</orcidid><orcidid>https://orcid.org/0000-0003-4004-5185</orcidid></search><sort><creationdate>20191009</creationdate><title>Interfacial States and Fano–Feshbach Resonance in Graphene–Silicon Vertical Junction</title><author>Tsai, Shin-Hung ; Lei, Sidong ; Zhu, Xiaodan ; Tsai, Shiao-Po ; Yin, Gen ; Che, Xiaoyu ; Deng, Peng ; Ng, Jimmy ; Zhang, Xiang ; Lin, Wei-Hsiang ; Jin, Zehua ; Qasem, Hussam ; Zhou, Zhongpo ; Vajtai, Robert ; Yeh, Nai-Chang ; Ajayan, Pulickel ; Xie, Ya-Hong ; Wang, Kang L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a394t-55a7853decc4ad89c9e979fa973503d0f13baa6e3ec62c1121af522e2abb06ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsai, Shin-Hung</creatorcontrib><creatorcontrib>Lei, Sidong</creatorcontrib><creatorcontrib>Zhu, Xiaodan</creatorcontrib><creatorcontrib>Tsai, Shiao-Po</creatorcontrib><creatorcontrib>Yin, Gen</creatorcontrib><creatorcontrib>Che, Xiaoyu</creatorcontrib><creatorcontrib>Deng, Peng</creatorcontrib><creatorcontrib>Ng, Jimmy</creatorcontrib><creatorcontrib>Zhang, Xiang</creatorcontrib><creatorcontrib>Lin, Wei-Hsiang</creatorcontrib><creatorcontrib>Jin, Zehua</creatorcontrib><creatorcontrib>Qasem, Hussam</creatorcontrib><creatorcontrib>Zhou, Zhongpo</creatorcontrib><creatorcontrib>Vajtai, Robert</creatorcontrib><creatorcontrib>Yeh, Nai-Chang</creatorcontrib><creatorcontrib>Ajayan, Pulickel</creatorcontrib><creatorcontrib>Xie, Ya-Hong</creatorcontrib><creatorcontrib>Wang, Kang L</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsai, Shin-Hung</au><au>Lei, Sidong</au><au>Zhu, Xiaodan</au><au>Tsai, Shiao-Po</au><au>Yin, Gen</au><au>Che, Xiaoyu</au><au>Deng, Peng</au><au>Ng, Jimmy</au><au>Zhang, Xiang</au><au>Lin, Wei-Hsiang</au><au>Jin, Zehua</au><au>Qasem, Hussam</au><au>Zhou, Zhongpo</au><au>Vajtai, Robert</au><au>Yeh, Nai-Chang</au><au>Ajayan, Pulickel</au><au>Xie, Ya-Hong</au><au>Wang, Kang L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interfacial States and Fano–Feshbach Resonance in Graphene–Silicon Vertical Junction</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2019-10-09</date><risdate>2019</risdate><volume>19</volume><issue>10</issue><spage>6765</spage><epage>6771</epage><pages>6765-6771</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Interfacial quantum states are drawing tremendous attention recently because of their importance in design of low-dimensional quantum heterostructures with desired charge, spin, or topological properties. Although most studies of the interfacial exchange interactions were mainly performed across the interface vertically, the lateral transport nowadays is still a major experimental method to probe these interactions indirectly. In this Letter, we fabricated a graphene and hydrogen passivated silicon interface to study the interfacial exchange processes. For the first time we found and confirmed a novel interfacial quantum state, which is specific to the 2D–3D interface. The vertically propagating electrons from silicon to graphene result in electron oscillation states at the 2D–3D interface. A harmonic oscillator model is used to explain this interfacial state. In addition, the interaction between this interfacial state (discrete energy spectrum) and the lateral band structure of graphene (continuous energy spectrum) results in Fano–Feshbach resonance. Our results show that the conventional description of the interfacial interaction in low-dimensional systems is valid only in considering the lateral band structure and its density-of-states and is incomplete for the ease of vertical transport. Our experimental observation and theoretical explanation provide more insightful understanding of various interfacial effects in low-dimensional materials, such as proximity effect, quantum tunneling, etc. More important, the Fano–Feshbach resonance may be used to realize all solid-state and scalable quantum interferometers.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31545901</pmid><doi>10.1021/acs.nanolett.9b01658</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3942-8827</orcidid><orcidid>https://orcid.org/0000-0001-8323-7860</orcidid><orcidid>https://orcid.org/0000-0003-0971-4280</orcidid><orcidid>https://orcid.org/0000-0001-9129-2202</orcidid><orcidid>https://orcid.org/0000-0003-1985-0446</orcidid><orcidid>https://orcid.org/0000-0001-6024-040X</orcidid><orcidid>https://orcid.org/0000-0002-1826-419X</orcidid><orcidid>https://orcid.org/0000-0003-4004-5185</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2019-10, Vol.19 (10), p.6765-6771
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_2296664063
source ACS Publications
title Interfacial States and Fano–Feshbach Resonance in Graphene–Silicon Vertical Junction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T10%3A44%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interfacial%20States%20and%20Fano%E2%80%93Feshbach%20Resonance%20in%20Graphene%E2%80%93Silicon%20Vertical%20Junction&rft.jtitle=Nano%20letters&rft.au=Tsai,%20Shin-Hung&rft.date=2019-10-09&rft.volume=19&rft.issue=10&rft.spage=6765&rft.epage=6771&rft.pages=6765-6771&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.9b01658&rft_dat=%3Cproquest_cross%3E2296664063%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2296664063&rft_id=info:pmid/31545901&rfr_iscdi=true