An O( n3) time algorithm for recognizing threshold dimension 2 graphs

Threshold dimension 2 graphs are the (edge-)intersection of two threshold graphs T 1 and T 2. Moreover they are the intersection graphs of points, axially parallel line segments and rectangles in the first quadrant of the Euclidean plane subject to the following constraints: 1. (1) line segments hav...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information processing letters 1998-09, Vol.67 (5), p.255-259
Hauptverfasser: Sterbini, Andrea, Raschle, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 259
container_issue 5
container_start_page 255
container_title Information processing letters
container_volume 67
creator Sterbini, Andrea
Raschle, Thomas
description Threshold dimension 2 graphs are the (edge-)intersection of two threshold graphs T 1 and T 2. Moreover they are the intersection graphs of points, axially parallel line segments and rectangles in the first quadrant of the Euclidean plane subject to the following constraints: 1. (1) line segments have one endpoint on one of the axes, 2. (2) the lower left corner of each rectangle is the origin and 3. (3) except for the above, every point, endpoint of a line segment and corner of a rectangle has unique x and y coordinates. Ma (1993) showed that the above geometrical representation called rectangle model can be constructed in O( n 3) time providing the vertices that correspond to the rectangles are known. In this paper, we prove that there always exists a rectangle model in which the rectangles correspond to the vertices common to all maximum cliques. As the maximum cliques of a threshold dimension 2 graph can be found in O( n 3), the overall running time of our recognition algorithm is O( n 3), which compares favorably to the previous approaches with time complexity O( n 5) and O( n 4), respectively.
doi_str_mv 10.1016/S0020-0190(98)00112-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_22958928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020019098001124</els_id><sourcerecordid>22958928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-4ba3be4b1591488446fede391404490b231d77521a530c3e6845542bda08a66d3</originalsourceid><addsrcrecordid>eNqFkMtKAzEUhoMoWC-PIAQR0cXoyWUymZUU8QaCC3UdMplMmzJNajIV9OlNbenCjavDge__z-FD6ITAFQEirl8BKBRAario5SUAIbTgO2hEZEULQUi9i0ZbZB8dpDQDAMFZNUJ3Y49fLrBnl3hwc4t1PwnRDdM57kLE0Zow8e7b-QkeptGmaehb3GbQJxc8pngS9WKajtBep_tkjzfzEL3f373dPhbPLw9Pt-PnwnABQ8EbzRrLG1LWhEvJuehsa1legPMaGspIW1UlJbpkYJgVkpclp02rQWohWnaIzte9ixg-ljYNau6SsX2vvQ3LpCitS1lTmcHTP-AsLKPPvynKKiqlAJKhcg2ZGFKKtlOL6OY6fikCamVW_ZpVK22qlurXrOI5d7Yp18novovaG5e2YcpBVkAzdrPGbDby6WxUyTjrjW1d9jqoNrh_Dv0ArtyJYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>237288601</pqid></control><display><type>article</type><title>An O( n3) time algorithm for recognizing threshold dimension 2 graphs</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Sterbini, Andrea ; Raschle, Thomas</creator><creatorcontrib>Sterbini, Andrea ; Raschle, Thomas</creatorcontrib><description>Threshold dimension 2 graphs are the (edge-)intersection of two threshold graphs T 1 and T 2. Moreover they are the intersection graphs of points, axially parallel line segments and rectangles in the first quadrant of the Euclidean plane subject to the following constraints: 1. (1) line segments have one endpoint on one of the axes, 2. (2) the lower left corner of each rectangle is the origin and 3. (3) except for the above, every point, endpoint of a line segment and corner of a rectangle has unique x and y coordinates. Ma (1993) showed that the above geometrical representation called rectangle model can be constructed in O( n 3) time providing the vertices that correspond to the rectangles are known. In this paper, we prove that there always exists a rectangle model in which the rectangles correspond to the vertices common to all maximum cliques. As the maximum cliques of a threshold dimension 2 graph can be found in O( n 3), the overall running time of our recognition algorithm is O( n 3), which compares favorably to the previous approaches with time complexity O( n 5) and O( n 4), respectively.</description><identifier>ISSN: 0020-0190</identifier><identifier>EISSN: 1872-6119</identifier><identifier>DOI: 10.1016/S0020-0190(98)00112-4</identifier><identifier>CODEN: IFPLAT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Algorithms ; Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Graphs ; Information processing ; Information retrieval. Graph ; Maximum cliques ; Studies ; Theoretical computing ; Threshold dimension 2 graphs</subject><ispartof>Information processing letters, 1998-09, Vol.67 (5), p.255-259</ispartof><rights>1998</rights><rights>1998 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Sep 15, 1998</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-4ba3be4b1591488446fede391404490b231d77521a530c3e6845542bda08a66d3</citedby><cites>FETCH-LOGICAL-c460t-4ba3be4b1591488446fede391404490b231d77521a530c3e6845542bda08a66d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0020-0190(98)00112-4$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2408702$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sterbini, Andrea</creatorcontrib><creatorcontrib>Raschle, Thomas</creatorcontrib><title>An O( n3) time algorithm for recognizing threshold dimension 2 graphs</title><title>Information processing letters</title><description>Threshold dimension 2 graphs are the (edge-)intersection of two threshold graphs T 1 and T 2. Moreover they are the intersection graphs of points, axially parallel line segments and rectangles in the first quadrant of the Euclidean plane subject to the following constraints: 1. (1) line segments have one endpoint on one of the axes, 2. (2) the lower left corner of each rectangle is the origin and 3. (3) except for the above, every point, endpoint of a line segment and corner of a rectangle has unique x and y coordinates. Ma (1993) showed that the above geometrical representation called rectangle model can be constructed in O( n 3) time providing the vertices that correspond to the rectangles are known. In this paper, we prove that there always exists a rectangle model in which the rectangles correspond to the vertices common to all maximum cliques. As the maximum cliques of a threshold dimension 2 graph can be found in O( n 3), the overall running time of our recognition algorithm is O( n 3), which compares favorably to the previous approaches with time complexity O( n 5) and O( n 4), respectively.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Graphs</subject><subject>Information processing</subject><subject>Information retrieval. Graph</subject><subject>Maximum cliques</subject><subject>Studies</subject><subject>Theoretical computing</subject><subject>Threshold dimension 2 graphs</subject><issn>0020-0190</issn><issn>1872-6119</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKAzEUhoMoWC-PIAQR0cXoyWUymZUU8QaCC3UdMplMmzJNajIV9OlNbenCjavDge__z-FD6ITAFQEirl8BKBRAario5SUAIbTgO2hEZEULQUi9i0ZbZB8dpDQDAMFZNUJ3Y49fLrBnl3hwc4t1PwnRDdM57kLE0Zow8e7b-QkeptGmaehb3GbQJxc8pngS9WKajtBep_tkjzfzEL3f373dPhbPLw9Pt-PnwnABQ8EbzRrLG1LWhEvJuehsa1legPMaGspIW1UlJbpkYJgVkpclp02rQWohWnaIzte9ixg-ljYNau6SsX2vvQ3LpCitS1lTmcHTP-AsLKPPvynKKiqlAJKhcg2ZGFKKtlOL6OY6fikCamVW_ZpVK22qlurXrOI5d7Yp18novovaG5e2YcpBVkAzdrPGbDby6WxUyTjrjW1d9jqoNrh_Dv0ArtyJYA</recordid><startdate>19980915</startdate><enddate>19980915</enddate><creator>Sterbini, Andrea</creator><creator>Raschle, Thomas</creator><general>Elsevier B.V</general><general>Elsevier Science</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19980915</creationdate><title>An O( n3) time algorithm for recognizing threshold dimension 2 graphs</title><author>Sterbini, Andrea ; Raschle, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-4ba3be4b1591488446fede391404490b231d77521a530c3e6845542bda08a66d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Graphs</topic><topic>Information processing</topic><topic>Information retrieval. Graph</topic><topic>Maximum cliques</topic><topic>Studies</topic><topic>Theoretical computing</topic><topic>Threshold dimension 2 graphs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sterbini, Andrea</creatorcontrib><creatorcontrib>Raschle, Thomas</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sterbini, Andrea</au><au>Raschle, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An O( n3) time algorithm for recognizing threshold dimension 2 graphs</atitle><jtitle>Information processing letters</jtitle><date>1998-09-15</date><risdate>1998</risdate><volume>67</volume><issue>5</issue><spage>255</spage><epage>259</epage><pages>255-259</pages><issn>0020-0190</issn><eissn>1872-6119</eissn><coden>IFPLAT</coden><abstract>Threshold dimension 2 graphs are the (edge-)intersection of two threshold graphs T 1 and T 2. Moreover they are the intersection graphs of points, axially parallel line segments and rectangles in the first quadrant of the Euclidean plane subject to the following constraints: 1. (1) line segments have one endpoint on one of the axes, 2. (2) the lower left corner of each rectangle is the origin and 3. (3) except for the above, every point, endpoint of a line segment and corner of a rectangle has unique x and y coordinates. Ma (1993) showed that the above geometrical representation called rectangle model can be constructed in O( n 3) time providing the vertices that correspond to the rectangles are known. In this paper, we prove that there always exists a rectangle model in which the rectangles correspond to the vertices common to all maximum cliques. As the maximum cliques of a threshold dimension 2 graph can be found in O( n 3), the overall running time of our recognition algorithm is O( n 3), which compares favorably to the previous approaches with time complexity O( n 5) and O( n 4), respectively.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0020-0190(98)00112-4</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-0190
ispartof Information processing letters, 1998-09, Vol.67 (5), p.255-259
issn 0020-0190
1872-6119
language eng
recordid cdi_proquest_miscellaneous_22958928
source Elsevier ScienceDirect Journals Complete
subjects Algorithmics. Computability. Computer arithmetics
Algorithms
Applied sciences
Computer science
control theory
systems
Exact sciences and technology
Graphs
Information processing
Information retrieval. Graph
Maximum cliques
Studies
Theoretical computing
Threshold dimension 2 graphs
title An O( n3) time algorithm for recognizing threshold dimension 2 graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A28%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20O(%20n3)%20time%20algorithm%20for%20recognizing%20threshold%20dimension%202%20graphs&rft.jtitle=Information%20processing%20letters&rft.au=Sterbini,%20Andrea&rft.date=1998-09-15&rft.volume=67&rft.issue=5&rft.spage=255&rft.epage=259&rft.pages=255-259&rft.issn=0020-0190&rft.eissn=1872-6119&rft.coden=IFPLAT&rft_id=info:doi/10.1016/S0020-0190(98)00112-4&rft_dat=%3Cproquest_cross%3E22958928%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=237288601&rft_id=info:pmid/&rft_els_id=S0020019098001124&rfr_iscdi=true