Genetically modified rice produces ginsenoside aglycone (protopanaxadiol)
Protopanaxadiol (PPD), an aglycone of ginsenosides, possesses pleiotropic anticarcinogenesis activities in many cancers. Here, we constructed transgenic rice overexpressing the Panax ginseng dammarenediol-II synthase gene (PgDDS) and protopanaxadiol synthase gene (CYP716A47) driven by a rice endospe...
Gespeichert in:
Veröffentlicht in: | Planta 2019-10, Vol.250 (4), p.1103-1110 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1110 |
---|---|
container_issue | 4 |
container_start_page | 1103 |
container_title | Planta |
container_volume | 250 |
creator | Han, Jung Yeon Baek, So-Hyeon Jo, Hye Jeong Yun, Do Won Choi, Yong Eui |
description | Protopanaxadiol (PPD), an aglycone of ginsenosides, possesses pleiotropic anticarcinogenesis activities in many cancers. Here, we constructed transgenic rice overexpressing the Panax ginseng dammarenediol-II synthase gene (PgDDS) and protopanaxadiol synthase gene (CYP716A47) driven by a rice endosperm-specific a-globulin promoter. Among more than 50 independent lines, five transgenic lines were selected. The introduction of the genes in the T1 generation of the transgenic lines was confirmed by genomic PCR. The expression of the introduced genes in T₂ seeds was confirmed by qPCR. Methanol extracts of transgenic rice grains were analyzed by LC/MS to detect the production of PPD and dammarenediol-II (DD). The production of both PPD and DD was identified not only by comparing the retention times but also mass fraction patterns of authentic PPD and DD standards. The mean concentrations of PPD and DD in rice grains were 16.4 and 4.5 µg/g dry weight, respectively. The invention of genetically engineered rice grains producing PPD and DD can be applied to rice breeding to reinforce new medicinal values. |
doi_str_mv | 10.1007/s00425-019-03204-4 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2295474537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48702340</jstor_id><sourcerecordid>48702340</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-b0039a2afd8d48977798eee34d53f7896bfabfc945924fb3e83ac6c9c90dd32a3</originalsourceid><addsrcrecordid>eNp9kE1r3DAYhEVJaDZJ_0ChxZBLenDzWh-WdAwhSQOBXNKzkKXXixavtZVsyP77KnE-oIeehDTPjIYh5GsDPxsAeZEBOBU1NLoGRoHX_BNZNZzRulzUAVlBea5BM3FEjnPeABRRys_kiDVNq9pWrMjdLY44BWeHYV9tow99QF-l4LDapehnh7lahzHjGHPwWNn1sHdxxOq8yFPc2dE-WR_i8OOUHPZ2yPjl9Twhv2-uH69-1fcPt3dXl_e1Y1pOdVdKaUtt75XnSksptUJExr1gvVS67Xrb9U5zoSnvO4aKWdc67TR4z6hlJ-R8yS0F_syYJ7MN2eEw2BHjnA2lWnDJBZMFPfsH3cQ5jaVdoZjgQKUShaIL5VLMOWFvdilsbdqbBszz0GYZ2pShzcvQhhfT99fouduif7e8LVsAtgC5SOMa08ff_439trg2eYrpPZUrCZRxYH8BqJeSRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2235402785</pqid></control><display><type>article</type><title>Genetically modified rice produces ginsenoside aglycone (protopanaxadiol)</title><source>MEDLINE</source><source>JSTOR</source><source>SpringerLink Journals - AutoHoldings</source><creator>Han, Jung Yeon ; Baek, So-Hyeon ; Jo, Hye Jeong ; Yun, Do Won ; Choi, Yong Eui</creator><creatorcontrib>Han, Jung Yeon ; Baek, So-Hyeon ; Jo, Hye Jeong ; Yun, Do Won ; Choi, Yong Eui</creatorcontrib><description>Protopanaxadiol (PPD), an aglycone of ginsenosides, possesses pleiotropic anticarcinogenesis activities in many cancers. Here, we constructed transgenic rice overexpressing the Panax ginseng dammarenediol-II synthase gene (PgDDS) and protopanaxadiol synthase gene (CYP716A47) driven by a rice endosperm-specific a-globulin promoter. Among more than 50 independent lines, five transgenic lines were selected. The introduction of the genes in the T1 generation of the transgenic lines was confirmed by genomic PCR. The expression of the introduced genes in T₂ seeds was confirmed by qPCR. Methanol extracts of transgenic rice grains were analyzed by LC/MS to detect the production of PPD and dammarenediol-II (DD). The production of both PPD and DD was identified not only by comparing the retention times but also mass fraction patterns of authentic PPD and DD standards. The mean concentrations of PPD and DD in rice grains were 16.4 and 4.5 µg/g dry weight, respectively. The invention of genetically engineered rice grains producing PPD and DD can be applied to rice breeding to reinforce new medicinal values.</description><identifier>ISSN: 0032-0935</identifier><identifier>EISSN: 1432-2048</identifier><identifier>DOI: 10.1007/s00425-019-03204-4</identifier><identifier>PMID: 31168665</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Science + Business Media</publisher><subject>Agriculture ; Alkyl and Aryl Transferases - genetics ; Alkyl and Aryl Transferases - metabolism ; Biomedical and Life Sciences ; Biosynthetic Pathways ; Dammaranes ; Ecology ; Endosperm ; Forestry ; Gene Expression ; Genes ; Genetic engineering ; Genetic modification ; Ginseng ; Ginsenosides ; Ginsenosides - chemistry ; Ginsenosides - metabolism ; Globulins ; Grain ; Life Sciences ; ORIGINAL ARTICLE ; Oryza ; Oryza - chemistry ; Oryza - genetics ; Oryza - metabolism ; Panax - chemistry ; Panax ginseng ; Plant breeding ; Plant Sciences ; Plants, Genetically Modified ; Rice ; Sapogenins - chemistry ; Sapogenins - metabolism ; Saponins - chemistry ; Saponins - metabolism ; Seeds ; Triterpenes - chemistry ; Triterpenes - metabolism</subject><ispartof>Planta, 2019-10, Vol.250 (4), p.1103-1110</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Planta is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-b0039a2afd8d48977798eee34d53f7896bfabfc945924fb3e83ac6c9c90dd32a3</citedby><cites>FETCH-LOGICAL-c397t-b0039a2afd8d48977798eee34d53f7896bfabfc945924fb3e83ac6c9c90dd32a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48702340$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48702340$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,41488,42557,51319,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31168665$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Jung Yeon</creatorcontrib><creatorcontrib>Baek, So-Hyeon</creatorcontrib><creatorcontrib>Jo, Hye Jeong</creatorcontrib><creatorcontrib>Yun, Do Won</creatorcontrib><creatorcontrib>Choi, Yong Eui</creatorcontrib><title>Genetically modified rice produces ginsenoside aglycone (protopanaxadiol)</title><title>Planta</title><addtitle>Planta</addtitle><addtitle>Planta</addtitle><description>Protopanaxadiol (PPD), an aglycone of ginsenosides, possesses pleiotropic anticarcinogenesis activities in many cancers. Here, we constructed transgenic rice overexpressing the Panax ginseng dammarenediol-II synthase gene (PgDDS) and protopanaxadiol synthase gene (CYP716A47) driven by a rice endosperm-specific a-globulin promoter. Among more than 50 independent lines, five transgenic lines were selected. The introduction of the genes in the T1 generation of the transgenic lines was confirmed by genomic PCR. The expression of the introduced genes in T₂ seeds was confirmed by qPCR. Methanol extracts of transgenic rice grains were analyzed by LC/MS to detect the production of PPD and dammarenediol-II (DD). The production of both PPD and DD was identified not only by comparing the retention times but also mass fraction patterns of authentic PPD and DD standards. The mean concentrations of PPD and DD in rice grains were 16.4 and 4.5 µg/g dry weight, respectively. The invention of genetically engineered rice grains producing PPD and DD can be applied to rice breeding to reinforce new medicinal values.</description><subject>Agriculture</subject><subject>Alkyl and Aryl Transferases - genetics</subject><subject>Alkyl and Aryl Transferases - metabolism</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthetic Pathways</subject><subject>Dammaranes</subject><subject>Ecology</subject><subject>Endosperm</subject><subject>Forestry</subject><subject>Gene Expression</subject><subject>Genes</subject><subject>Genetic engineering</subject><subject>Genetic modification</subject><subject>Ginseng</subject><subject>Ginsenosides</subject><subject>Ginsenosides - chemistry</subject><subject>Ginsenosides - metabolism</subject><subject>Globulins</subject><subject>Grain</subject><subject>Life Sciences</subject><subject>ORIGINAL ARTICLE</subject><subject>Oryza</subject><subject>Oryza - chemistry</subject><subject>Oryza - genetics</subject><subject>Oryza - metabolism</subject><subject>Panax - chemistry</subject><subject>Panax ginseng</subject><subject>Plant breeding</subject><subject>Plant Sciences</subject><subject>Plants, Genetically Modified</subject><subject>Rice</subject><subject>Sapogenins - chemistry</subject><subject>Sapogenins - metabolism</subject><subject>Saponins - chemistry</subject><subject>Saponins - metabolism</subject><subject>Seeds</subject><subject>Triterpenes - chemistry</subject><subject>Triterpenes - metabolism</subject><issn>0032-0935</issn><issn>1432-2048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1r3DAYhEVJaDZJ_0ChxZBLenDzWh-WdAwhSQOBXNKzkKXXixavtZVsyP77KnE-oIeehDTPjIYh5GsDPxsAeZEBOBU1NLoGRoHX_BNZNZzRulzUAVlBea5BM3FEjnPeABRRys_kiDVNq9pWrMjdLY44BWeHYV9tow99QF-l4LDapehnh7lahzHjGHPwWNn1sHdxxOq8yFPc2dE-WR_i8OOUHPZ2yPjl9Twhv2-uH69-1fcPt3dXl_e1Y1pOdVdKaUtt75XnSksptUJExr1gvVS67Xrb9U5zoSnvO4aKWdc67TR4z6hlJ-R8yS0F_syYJ7MN2eEw2BHjnA2lWnDJBZMFPfsH3cQ5jaVdoZjgQKUShaIL5VLMOWFvdilsbdqbBszz0GYZ2pShzcvQhhfT99fouduif7e8LVsAtgC5SOMa08ff_439trg2eYrpPZUrCZRxYH8BqJeSRg</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Han, Jung Yeon</creator><creator>Baek, So-Hyeon</creator><creator>Jo, Hye Jeong</creator><creator>Yun, Do Won</creator><creator>Choi, Yong Eui</creator><general>Springer Science + Business Media</general><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20191001</creationdate><title>Genetically modified rice produces ginsenoside aglycone (protopanaxadiol)</title><author>Han, Jung Yeon ; Baek, So-Hyeon ; Jo, Hye Jeong ; Yun, Do Won ; Choi, Yong Eui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-b0039a2afd8d48977798eee34d53f7896bfabfc945924fb3e83ac6c9c90dd32a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Agriculture</topic><topic>Alkyl and Aryl Transferases - genetics</topic><topic>Alkyl and Aryl Transferases - metabolism</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthetic Pathways</topic><topic>Dammaranes</topic><topic>Ecology</topic><topic>Endosperm</topic><topic>Forestry</topic><topic>Gene Expression</topic><topic>Genes</topic><topic>Genetic engineering</topic><topic>Genetic modification</topic><topic>Ginseng</topic><topic>Ginsenosides</topic><topic>Ginsenosides - chemistry</topic><topic>Ginsenosides - metabolism</topic><topic>Globulins</topic><topic>Grain</topic><topic>Life Sciences</topic><topic>ORIGINAL ARTICLE</topic><topic>Oryza</topic><topic>Oryza - chemistry</topic><topic>Oryza - genetics</topic><topic>Oryza - metabolism</topic><topic>Panax - chemistry</topic><topic>Panax ginseng</topic><topic>Plant breeding</topic><topic>Plant Sciences</topic><topic>Plants, Genetically Modified</topic><topic>Rice</topic><topic>Sapogenins - chemistry</topic><topic>Sapogenins - metabolism</topic><topic>Saponins - chemistry</topic><topic>Saponins - metabolism</topic><topic>Seeds</topic><topic>Triterpenes - chemistry</topic><topic>Triterpenes - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Jung Yeon</creatorcontrib><creatorcontrib>Baek, So-Hyeon</creatorcontrib><creatorcontrib>Jo, Hye Jeong</creatorcontrib><creatorcontrib>Yun, Do Won</creatorcontrib><creatorcontrib>Choi, Yong Eui</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Planta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Jung Yeon</au><au>Baek, So-Hyeon</au><au>Jo, Hye Jeong</au><au>Yun, Do Won</au><au>Choi, Yong Eui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetically modified rice produces ginsenoside aglycone (protopanaxadiol)</atitle><jtitle>Planta</jtitle><stitle>Planta</stitle><addtitle>Planta</addtitle><date>2019-10-01</date><risdate>2019</risdate><volume>250</volume><issue>4</issue><spage>1103</spage><epage>1110</epage><pages>1103-1110</pages><issn>0032-0935</issn><eissn>1432-2048</eissn><abstract>Protopanaxadiol (PPD), an aglycone of ginsenosides, possesses pleiotropic anticarcinogenesis activities in many cancers. Here, we constructed transgenic rice overexpressing the Panax ginseng dammarenediol-II synthase gene (PgDDS) and protopanaxadiol synthase gene (CYP716A47) driven by a rice endosperm-specific a-globulin promoter. Among more than 50 independent lines, five transgenic lines were selected. The introduction of the genes in the T1 generation of the transgenic lines was confirmed by genomic PCR. The expression of the introduced genes in T₂ seeds was confirmed by qPCR. Methanol extracts of transgenic rice grains were analyzed by LC/MS to detect the production of PPD and dammarenediol-II (DD). The production of both PPD and DD was identified not only by comparing the retention times but also mass fraction patterns of authentic PPD and DD standards. The mean concentrations of PPD and DD in rice grains were 16.4 and 4.5 µg/g dry weight, respectively. The invention of genetically engineered rice grains producing PPD and DD can be applied to rice breeding to reinforce new medicinal values.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Science + Business Media</pub><pmid>31168665</pmid><doi>10.1007/s00425-019-03204-4</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0935 |
ispartof | Planta, 2019-10, Vol.250 (4), p.1103-1110 |
issn | 0032-0935 1432-2048 |
language | eng |
recordid | cdi_proquest_miscellaneous_2295474537 |
source | MEDLINE; JSTOR; SpringerLink Journals - AutoHoldings |
subjects | Agriculture Alkyl and Aryl Transferases - genetics Alkyl and Aryl Transferases - metabolism Biomedical and Life Sciences Biosynthetic Pathways Dammaranes Ecology Endosperm Forestry Gene Expression Genes Genetic engineering Genetic modification Ginseng Ginsenosides Ginsenosides - chemistry Ginsenosides - metabolism Globulins Grain Life Sciences ORIGINAL ARTICLE Oryza Oryza - chemistry Oryza - genetics Oryza - metabolism Panax - chemistry Panax ginseng Plant breeding Plant Sciences Plants, Genetically Modified Rice Sapogenins - chemistry Sapogenins - metabolism Saponins - chemistry Saponins - metabolism Seeds Triterpenes - chemistry Triterpenes - metabolism |
title | Genetically modified rice produces ginsenoside aglycone (protopanaxadiol) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A49%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetically%20modified%20rice%20produces%20ginsenoside%20aglycone%20(protopanaxadiol)&rft.jtitle=Planta&rft.au=Han,%20Jung%20Yeon&rft.date=2019-10-01&rft.volume=250&rft.issue=4&rft.spage=1103&rft.epage=1110&rft.pages=1103-1110&rft.issn=0032-0935&rft.eissn=1432-2048&rft_id=info:doi/10.1007/s00425-019-03204-4&rft_dat=%3Cjstor_proqu%3E48702340%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2235402785&rft_id=info:pmid/31168665&rft_jstor_id=48702340&rfr_iscdi=true |