Ammonium regulates Fe deficiency responses by enhancing nitric oxide signaling in Arabidopsis thaliana

Ammonium ( N H 4 + ) plays an important role in phosphorus-deficiency responses in rice, but its role in responses to Fe deficiency remains unknown. Here, we demonstrate that the accumulation of N H 4 + plays a pivotal role when Arabidopsis thaliana plants are subject to Fe deficiency. The Arabidops...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Planta 2019-10, Vol.250 (4), p.1089-1102
Hauptverfasser: Zhu, Xiao Fang, Dong, Xiao Ying, Wu, Qi, Shen, Ren Fang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1102
container_issue 4
container_start_page 1089
container_title Planta
container_volume 250
creator Zhu, Xiao Fang
Dong, Xiao Ying
Wu, Qi
Shen, Ren Fang
description Ammonium ( N H 4 + ) plays an important role in phosphorus-deficiency responses in rice, but its role in responses to Fe deficiency remains unknown. Here, we demonstrate that the accumulation of N H 4 + plays a pivotal role when Arabidopsis thaliana plants are subject to Fe deficiency. The Arabidopsis amt1-3 mutant, which is defective in endogenous N H 4 + sensing, exhibited increased sensitivity to Fe deficiency compared to WT (wild type; Col-0). In addition, exogenous application of N H 4 + significantly alleviated Fe deficiency symptoms in plants. N H 4 + triggers the production of nitric oxide (NO), which then induces ferric-chelate reductase (FCR) activity and accelerates the release of Fe from the cell wall, especially hemicellulose, thereby increasing the availability of soluble Fe in roots. N H 4 + also increases soluble Fe levels in shoots by upregulating genes involved in Fe translocation, such as FRD3 (FERRIC REDUCTASE DEFECTIVE3) and NAS1 (NICOTIANAMINE SYNTHASE1), hence, alleviating leaf chlorosis. Overall, N H 4 + plays an important role in the reutilization of Fe from the cell wall and the redistribution of Fe from root to shoot in Fe-deficient arabidopsis, a process dependent on NO accumulation.
doi_str_mv 10.1007/s00425-019-03202-6
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2295472586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48702338</jstor_id><sourcerecordid>48702338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-444bbcfc4339ddf1aa2f9871f340882afcbe07892435c08d9503df0efb535a993</originalsourceid><addsrcrecordid>eNp9kU9r3DAQxUVpaTZpv0ChRdBLLm5H_2zpuIQmLQR6Sc5ClqWNFlvaSjZ0v320cZpCDz0NvPnNm5EeQh8IfCEA3dcCwKlogKgGGAXatK_QhnBGGwpcvkYbqHIDiokzdF7KHqA2u-4tOmOEtLJt-Qb57TSlGJYJZ7dbRjO7gq8dHpwPNrhoj1UvhxRL1fsjdvHBRBviDscw52Bx-h0Gh0vYRTOe5BDxNps-DOlQQsHzQ5VNNO_QG2_G4t4_1wt0f_3t7up7c_vz5sfV9raxTHVzwznve-stZ0wNgyfGUK9kRzzjICU13vYOOqkoZ8KCHJQANnhwvhdMGKXYBbpcfQ85_VpcmfUUinXjaKJLS9GUKsE7KmRb0c__oPu05PqME8UEByo7qBRdKZtTKdl5fchhMvmoCehTCnpNQdcU9FMK-mT96dl66Sc3vIz8-fYKsBUotRV3Lv_d_V_bj-vUvswpv7jyeidlTLJHaHCcfQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2235402870</pqid></control><display><type>article</type><title>Ammonium regulates Fe deficiency responses by enhancing nitric oxide signaling in Arabidopsis thaliana</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>Springer Nature - Complete Springer Journals</source><creator>Zhu, Xiao Fang ; Dong, Xiao Ying ; Wu, Qi ; Shen, Ren Fang</creator><creatorcontrib>Zhu, Xiao Fang ; Dong, Xiao Ying ; Wu, Qi ; Shen, Ren Fang</creatorcontrib><description>Ammonium ( N H 4 + ) plays an important role in phosphorus-deficiency responses in rice, but its role in responses to Fe deficiency remains unknown. Here, we demonstrate that the accumulation of N H 4 + plays a pivotal role when Arabidopsis thaliana plants are subject to Fe deficiency. The Arabidopsis amt1-3 mutant, which is defective in endogenous N H 4 + sensing, exhibited increased sensitivity to Fe deficiency compared to WT (wild type; Col-0). In addition, exogenous application of N H 4 + significantly alleviated Fe deficiency symptoms in plants. N H 4 + triggers the production of nitric oxide (NO), which then induces ferric-chelate reductase (FCR) activity and accelerates the release of Fe from the cell wall, especially hemicellulose, thereby increasing the availability of soluble Fe in roots. N H 4 + also increases soluble Fe levels in shoots by upregulating genes involved in Fe translocation, such as FRD3 (FERRIC REDUCTASE DEFECTIVE3) and NAS1 (NICOTIANAMINE SYNTHASE1), hence, alleviating leaf chlorosis. Overall, N H 4 + plays an important role in the reutilization of Fe from the cell wall and the redistribution of Fe from root to shoot in Fe-deficient arabidopsis, a process dependent on NO accumulation.</description><identifier>ISSN: 0032-0935</identifier><identifier>EISSN: 1432-2048</identifier><identifier>DOI: 10.1007/s00425-019-03202-6</identifier><identifier>PMID: 31168664</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Science + Business Media</publisher><subject>Accumulation ; Agriculture ; Ammonium ; Ammonium Compounds - metabolism ; Arabidopsis ; Arabidopsis - genetics ; Arabidopsis - physiology ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Arabidopsis thaliana ; Biological Transport ; Biomedical and Life Sciences ; Cell Wall - metabolism ; Cell walls ; Chelates ; Chlorosis ; Ecology ; Ferric-chelate reductase ; Forestry ; Gene Expression Regulation, Plant ; Hemicellulose ; Iron Deficiencies ; Iron deficiency ; Life Sciences ; Membrane Transport Proteins - genetics ; Membrane Transport Proteins - metabolism ; Mutation ; Nicotianamine ; Nitric oxide ; Nitric Oxide - metabolism ; ORIGINAL ARTICLE ; Phosphorus ; Phosphorus - metabolism ; Plant Sciences ; Polysaccharides - metabolism ; Reductases ; Shoots ; Signal Transduction ; Signs and symptoms ; Stress, Physiological ; Translocation</subject><ispartof>Planta, 2019-10, Vol.250 (4), p.1089-1102</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Planta is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-444bbcfc4339ddf1aa2f9871f340882afcbe07892435c08d9503df0efb535a993</citedby><cites>FETCH-LOGICAL-c397t-444bbcfc4339ddf1aa2f9871f340882afcbe07892435c08d9503df0efb535a993</cites><orcidid>0000-0001-6474-8198</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48702338$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48702338$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,27903,27904,41467,42536,51298,57996,58229</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31168664$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Xiao Fang</creatorcontrib><creatorcontrib>Dong, Xiao Ying</creatorcontrib><creatorcontrib>Wu, Qi</creatorcontrib><creatorcontrib>Shen, Ren Fang</creatorcontrib><title>Ammonium regulates Fe deficiency responses by enhancing nitric oxide signaling in Arabidopsis thaliana</title><title>Planta</title><addtitle>Planta</addtitle><addtitle>Planta</addtitle><description>Ammonium ( N H 4 + ) plays an important role in phosphorus-deficiency responses in rice, but its role in responses to Fe deficiency remains unknown. Here, we demonstrate that the accumulation of N H 4 + plays a pivotal role when Arabidopsis thaliana plants are subject to Fe deficiency. The Arabidopsis amt1-3 mutant, which is defective in endogenous N H 4 + sensing, exhibited increased sensitivity to Fe deficiency compared to WT (wild type; Col-0). In addition, exogenous application of N H 4 + significantly alleviated Fe deficiency symptoms in plants. N H 4 + triggers the production of nitric oxide (NO), which then induces ferric-chelate reductase (FCR) activity and accelerates the release of Fe from the cell wall, especially hemicellulose, thereby increasing the availability of soluble Fe in roots. N H 4 + also increases soluble Fe levels in shoots by upregulating genes involved in Fe translocation, such as FRD3 (FERRIC REDUCTASE DEFECTIVE3) and NAS1 (NICOTIANAMINE SYNTHASE1), hence, alleviating leaf chlorosis. Overall, N H 4 + plays an important role in the reutilization of Fe from the cell wall and the redistribution of Fe from root to shoot in Fe-deficient arabidopsis, a process dependent on NO accumulation.</description><subject>Accumulation</subject><subject>Agriculture</subject><subject>Ammonium</subject><subject>Ammonium Compounds - metabolism</subject><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - physiology</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>Biological Transport</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Wall - metabolism</subject><subject>Cell walls</subject><subject>Chelates</subject><subject>Chlorosis</subject><subject>Ecology</subject><subject>Ferric-chelate reductase</subject><subject>Forestry</subject><subject>Gene Expression Regulation, Plant</subject><subject>Hemicellulose</subject><subject>Iron Deficiencies</subject><subject>Iron deficiency</subject><subject>Life Sciences</subject><subject>Membrane Transport Proteins - genetics</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>Mutation</subject><subject>Nicotianamine</subject><subject>Nitric oxide</subject><subject>Nitric Oxide - metabolism</subject><subject>ORIGINAL ARTICLE</subject><subject>Phosphorus</subject><subject>Phosphorus - metabolism</subject><subject>Plant Sciences</subject><subject>Polysaccharides - metabolism</subject><subject>Reductases</subject><subject>Shoots</subject><subject>Signal Transduction</subject><subject>Signs and symptoms</subject><subject>Stress, Physiological</subject><subject>Translocation</subject><issn>0032-0935</issn><issn>1432-2048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU9r3DAQxUVpaTZpv0ChRdBLLm5H_2zpuIQmLQR6Sc5ClqWNFlvaSjZ0v320cZpCDz0NvPnNm5EeQh8IfCEA3dcCwKlogKgGGAXatK_QhnBGGwpcvkYbqHIDiokzdF7KHqA2u-4tOmOEtLJt-Qb57TSlGJYJZ7dbRjO7gq8dHpwPNrhoj1UvhxRL1fsjdvHBRBviDscw52Bx-h0Gh0vYRTOe5BDxNps-DOlQQsHzQ5VNNO_QG2_G4t4_1wt0f_3t7up7c_vz5sfV9raxTHVzwznve-stZ0wNgyfGUK9kRzzjICU13vYOOqkoZ8KCHJQANnhwvhdMGKXYBbpcfQ85_VpcmfUUinXjaKJLS9GUKsE7KmRb0c__oPu05PqME8UEByo7qBRdKZtTKdl5fchhMvmoCehTCnpNQdcU9FMK-mT96dl66Sc3vIz8-fYKsBUotRV3Lv_d_V_bj-vUvswpv7jyeidlTLJHaHCcfQ</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Zhu, Xiao Fang</creator><creator>Dong, Xiao Ying</creator><creator>Wu, Qi</creator><creator>Shen, Ren Fang</creator><general>Springer Science + Business Media</general><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6474-8198</orcidid></search><sort><creationdate>20191001</creationdate><title>Ammonium regulates Fe deficiency responses by enhancing nitric oxide signaling in Arabidopsis thaliana</title><author>Zhu, Xiao Fang ; Dong, Xiao Ying ; Wu, Qi ; Shen, Ren Fang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-444bbcfc4339ddf1aa2f9871f340882afcbe07892435c08d9503df0efb535a993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accumulation</topic><topic>Agriculture</topic><topic>Ammonium</topic><topic>Ammonium Compounds - metabolism</topic><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - physiology</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>Biological Transport</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Wall - metabolism</topic><topic>Cell walls</topic><topic>Chelates</topic><topic>Chlorosis</topic><topic>Ecology</topic><topic>Ferric-chelate reductase</topic><topic>Forestry</topic><topic>Gene Expression Regulation, Plant</topic><topic>Hemicellulose</topic><topic>Iron Deficiencies</topic><topic>Iron deficiency</topic><topic>Life Sciences</topic><topic>Membrane Transport Proteins - genetics</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>Mutation</topic><topic>Nicotianamine</topic><topic>Nitric oxide</topic><topic>Nitric Oxide - metabolism</topic><topic>ORIGINAL ARTICLE</topic><topic>Phosphorus</topic><topic>Phosphorus - metabolism</topic><topic>Plant Sciences</topic><topic>Polysaccharides - metabolism</topic><topic>Reductases</topic><topic>Shoots</topic><topic>Signal Transduction</topic><topic>Signs and symptoms</topic><topic>Stress, Physiological</topic><topic>Translocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Xiao Fang</creatorcontrib><creatorcontrib>Dong, Xiao Ying</creatorcontrib><creatorcontrib>Wu, Qi</creatorcontrib><creatorcontrib>Shen, Ren Fang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Planta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Xiao Fang</au><au>Dong, Xiao Ying</au><au>Wu, Qi</au><au>Shen, Ren Fang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ammonium regulates Fe deficiency responses by enhancing nitric oxide signaling in Arabidopsis thaliana</atitle><jtitle>Planta</jtitle><stitle>Planta</stitle><addtitle>Planta</addtitle><date>2019-10-01</date><risdate>2019</risdate><volume>250</volume><issue>4</issue><spage>1089</spage><epage>1102</epage><pages>1089-1102</pages><issn>0032-0935</issn><eissn>1432-2048</eissn><abstract>Ammonium ( N H 4 + ) plays an important role in phosphorus-deficiency responses in rice, but its role in responses to Fe deficiency remains unknown. Here, we demonstrate that the accumulation of N H 4 + plays a pivotal role when Arabidopsis thaliana plants are subject to Fe deficiency. The Arabidopsis amt1-3 mutant, which is defective in endogenous N H 4 + sensing, exhibited increased sensitivity to Fe deficiency compared to WT (wild type; Col-0). In addition, exogenous application of N H 4 + significantly alleviated Fe deficiency symptoms in plants. N H 4 + triggers the production of nitric oxide (NO), which then induces ferric-chelate reductase (FCR) activity and accelerates the release of Fe from the cell wall, especially hemicellulose, thereby increasing the availability of soluble Fe in roots. N H 4 + also increases soluble Fe levels in shoots by upregulating genes involved in Fe translocation, such as FRD3 (FERRIC REDUCTASE DEFECTIVE3) and NAS1 (NICOTIANAMINE SYNTHASE1), hence, alleviating leaf chlorosis. Overall, N H 4 + plays an important role in the reutilization of Fe from the cell wall and the redistribution of Fe from root to shoot in Fe-deficient arabidopsis, a process dependent on NO accumulation.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Science + Business Media</pub><pmid>31168664</pmid><doi>10.1007/s00425-019-03202-6</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6474-8198</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0032-0935
ispartof Planta, 2019-10, Vol.250 (4), p.1089-1102
issn 0032-0935
1432-2048
language eng
recordid cdi_proquest_miscellaneous_2295472586
source MEDLINE; Jstor Complete Legacy; Springer Nature - Complete Springer Journals
subjects Accumulation
Agriculture
Ammonium
Ammonium Compounds - metabolism
Arabidopsis
Arabidopsis - genetics
Arabidopsis - physiology
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Arabidopsis thaliana
Biological Transport
Biomedical and Life Sciences
Cell Wall - metabolism
Cell walls
Chelates
Chlorosis
Ecology
Ferric-chelate reductase
Forestry
Gene Expression Regulation, Plant
Hemicellulose
Iron Deficiencies
Iron deficiency
Life Sciences
Membrane Transport Proteins - genetics
Membrane Transport Proteins - metabolism
Mutation
Nicotianamine
Nitric oxide
Nitric Oxide - metabolism
ORIGINAL ARTICLE
Phosphorus
Phosphorus - metabolism
Plant Sciences
Polysaccharides - metabolism
Reductases
Shoots
Signal Transduction
Signs and symptoms
Stress, Physiological
Translocation
title Ammonium regulates Fe deficiency responses by enhancing nitric oxide signaling in Arabidopsis thaliana
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T04%3A58%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ammonium%20regulates%20Fe%20deficiency%20responses%20by%20enhancing%20nitric%20oxide%20signaling%20in%20Arabidopsis%20thaliana&rft.jtitle=Planta&rft.au=Zhu,%20Xiao%20Fang&rft.date=2019-10-01&rft.volume=250&rft.issue=4&rft.spage=1089&rft.epage=1102&rft.pages=1089-1102&rft.issn=0032-0935&rft.eissn=1432-2048&rft_id=info:doi/10.1007/s00425-019-03202-6&rft_dat=%3Cjstor_proqu%3E48702338%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2235402870&rft_id=info:pmid/31168664&rft_jstor_id=48702338&rfr_iscdi=true