Electronic Skin: Recent Progress and Future Prospects for Skin‐Attachable Devices for Health Monitoring, Robotics, and Prosthetics

Recent progress in electronic skin or e‐skin research is broadly reviewed, focusing on technologies needed in three main applications: skin‐attachable electronics, robotics, and prosthetics. First, since e‐skin will be exposed to prolonged stresses of various kinds and needs to be conformally adhere...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2019-11, Vol.31 (48), p.e1904765-n/a
Hauptverfasser: Yang, Jun Chang, Mun, Jaewan, Kwon, Se Young, Park, Seongjun, Bao, Zhenan, Park, Steve
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 48
container_start_page e1904765
container_title Advanced materials (Weinheim)
container_volume 31
creator Yang, Jun Chang
Mun, Jaewan
Kwon, Se Young
Park, Seongjun
Bao, Zhenan
Park, Steve
description Recent progress in electronic skin or e‐skin research is broadly reviewed, focusing on technologies needed in three main applications: skin‐attachable electronics, robotics, and prosthetics. First, since e‐skin will be exposed to prolonged stresses of various kinds and needs to be conformally adhered to irregularly shaped surfaces, materials with intrinsic stretchability and self‐healing properties are of great importance. Second, tactile sensing capability such as the detection of pressure, strain, slip, force vector, and temperature are important for health monitoring in skin attachable devices, and to enable object manipulation and detection of surrounding environment for robotics and prosthetics. For skin attachable devices, chemical and electrophysiological sensing and wireless signal communication are of high significance to fully gauge the state of health of users and to ensure user comfort. For robotics and prosthetics, large‐area integration on 3D surfaces in a facile and scalable manner is critical. Furthermore, new signal processing strategies using neuromorphic devices are needed to efficiently process tactile information in a parallel and low power manner. For prosthetics, neural interfacing electrodes are of high importance. These topics are discussed, focusing on progress, current challenges, and future prospects. Recent progress in electronic skin research is broadly reviewed, focusing on the technologies required in the following three applications: skin‐attachable electronics, robotics, and prosthetics. Topics such as stretchability, self‐healing, biocompatibility, tactile sensing, chemical and electrophysiological sensing, wireless communication, large‐area integration, neuromorphic signal processing, and neural interfaces are discussed.
doi_str_mv 10.1002/adma.201904765
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2295463186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2317574591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5425-aef98ef49b6421cd307679c86a7ec0c51878b0fe6dbae0294a619fab257ea7143</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EokvhyhFZ4sKhWcaOP2Juq35QpFagAmfLcSbdlGy8tR1Qbxz4AfxGfglJtxSJC6eRZp55NKOXkOcMlgyAv3bNxi05MANCK_mALJjkrBBg5EOyAFPKwihR7ZEnKV0BgFGgHpO9ksmyKjUsyI_jHn2OYeg8_filG97QC_Q4ZPohhsuIKVE3NPRkzGPEuZe2E55oG-It_uv7z1XOzq9d3SM9wq-dx930FF2f1_R8MucQu-HygF6EOuTOp4Nb5yzLa5wbT8mj1vUJn93VffL55PjT4Wlx9v7tu8PVWeGl4LJw2JoKW2FqJTjzTQlaaeMr5TR68JJVuqqhRdXUDoEb4RQzrau51Og0E-U-ebXzbmO4HjFlu-mSx753A4YxWc6NFKpklZrQl_-gV2GMw3Sd5SXTUgtp2EQtd5SfnkkRW7uN3cbFG8vAzvnYOR97n8-08OJOO9YbbO7xP4FMgNkB37oeb_6js6uj89Vf-W8xiJ5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2317574591</pqid></control><display><type>article</type><title>Electronic Skin: Recent Progress and Future Prospects for Skin‐Attachable Devices for Health Monitoring, Robotics, and Prosthetics</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yang, Jun Chang ; Mun, Jaewan ; Kwon, Se Young ; Park, Seongjun ; Bao, Zhenan ; Park, Steve</creator><creatorcontrib>Yang, Jun Chang ; Mun, Jaewan ; Kwon, Se Young ; Park, Seongjun ; Bao, Zhenan ; Park, Steve</creatorcontrib><description>Recent progress in electronic skin or e‐skin research is broadly reviewed, focusing on technologies needed in three main applications: skin‐attachable electronics, robotics, and prosthetics. First, since e‐skin will be exposed to prolonged stresses of various kinds and needs to be conformally adhered to irregularly shaped surfaces, materials with intrinsic stretchability and self‐healing properties are of great importance. Second, tactile sensing capability such as the detection of pressure, strain, slip, force vector, and temperature are important for health monitoring in skin attachable devices, and to enable object manipulation and detection of surrounding environment for robotics and prosthetics. For skin attachable devices, chemical and electrophysiological sensing and wireless signal communication are of high significance to fully gauge the state of health of users and to ensure user comfort. For robotics and prosthetics, large‐area integration on 3D surfaces in a facile and scalable manner is critical. Furthermore, new signal processing strategies using neuromorphic devices are needed to efficiently process tactile information in a parallel and low power manner. For prosthetics, neural interfacing electrodes are of high importance. These topics are discussed, focusing on progress, current challenges, and future prospects. Recent progress in electronic skin research is broadly reviewed, focusing on the technologies required in the following three applications: skin‐attachable electronics, robotics, and prosthetics. Topics such as stretchability, self‐healing, biocompatibility, tactile sensing, chemical and electrophysiological sensing, wireless communication, large‐area integration, neuromorphic signal processing, and neural interfaces are discussed.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201904765</identifier><identifier>PMID: 31538370</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Biocompatible Materials - chemistry ; Biosensing Techniques ; Devices ; electronic skins ; Health ; Humans ; Mechanical Phenomena ; Monitoring, Physiologic - instrumentation ; Organic chemistry ; Polymers - chemistry ; Prostheses ; Prostheses and Implants ; prosthetics ; Robotics ; Robotics - instrumentation ; Semiconductors ; Signal processing ; Skin ; Stretchability ; stretchable devices ; Surface Properties ; Tactile sensors (robotics) ; Touch ; wearable devices ; Wearable Electronic Devices ; Wireless communications ; Wireless Technology - instrumentation ; Wound Healing</subject><ispartof>Advanced materials (Weinheim), 2019-11, Vol.31 (48), p.e1904765-n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5425-aef98ef49b6421cd307679c86a7ec0c51878b0fe6dbae0294a619fab257ea7143</citedby><cites>FETCH-LOGICAL-c5425-aef98ef49b6421cd307679c86a7ec0c51878b0fe6dbae0294a619fab257ea7143</cites><orcidid>0000-0002-0972-1715</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201904765$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201904765$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31538370$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Jun Chang</creatorcontrib><creatorcontrib>Mun, Jaewan</creatorcontrib><creatorcontrib>Kwon, Se Young</creatorcontrib><creatorcontrib>Park, Seongjun</creatorcontrib><creatorcontrib>Bao, Zhenan</creatorcontrib><creatorcontrib>Park, Steve</creatorcontrib><title>Electronic Skin: Recent Progress and Future Prospects for Skin‐Attachable Devices for Health Monitoring, Robotics, and Prosthetics</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Recent progress in electronic skin or e‐skin research is broadly reviewed, focusing on technologies needed in three main applications: skin‐attachable electronics, robotics, and prosthetics. First, since e‐skin will be exposed to prolonged stresses of various kinds and needs to be conformally adhered to irregularly shaped surfaces, materials with intrinsic stretchability and self‐healing properties are of great importance. Second, tactile sensing capability such as the detection of pressure, strain, slip, force vector, and temperature are important for health monitoring in skin attachable devices, and to enable object manipulation and detection of surrounding environment for robotics and prosthetics. For skin attachable devices, chemical and electrophysiological sensing and wireless signal communication are of high significance to fully gauge the state of health of users and to ensure user comfort. For robotics and prosthetics, large‐area integration on 3D surfaces in a facile and scalable manner is critical. Furthermore, new signal processing strategies using neuromorphic devices are needed to efficiently process tactile information in a parallel and low power manner. For prosthetics, neural interfacing electrodes are of high importance. These topics are discussed, focusing on progress, current challenges, and future prospects. Recent progress in electronic skin research is broadly reviewed, focusing on the technologies required in the following three applications: skin‐attachable electronics, robotics, and prosthetics. Topics such as stretchability, self‐healing, biocompatibility, tactile sensing, chemical and electrophysiological sensing, wireless communication, large‐area integration, neuromorphic signal processing, and neural interfaces are discussed.</description><subject>Biocompatible Materials - chemistry</subject><subject>Biosensing Techniques</subject><subject>Devices</subject><subject>electronic skins</subject><subject>Health</subject><subject>Humans</subject><subject>Mechanical Phenomena</subject><subject>Monitoring, Physiologic - instrumentation</subject><subject>Organic chemistry</subject><subject>Polymers - chemistry</subject><subject>Prostheses</subject><subject>Prostheses and Implants</subject><subject>prosthetics</subject><subject>Robotics</subject><subject>Robotics - instrumentation</subject><subject>Semiconductors</subject><subject>Signal processing</subject><subject>Skin</subject><subject>Stretchability</subject><subject>stretchable devices</subject><subject>Surface Properties</subject><subject>Tactile sensors (robotics)</subject><subject>Touch</subject><subject>wearable devices</subject><subject>Wearable Electronic Devices</subject><subject>Wireless communications</subject><subject>Wireless Technology - instrumentation</subject><subject>Wound Healing</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhi0EokvhyhFZ4sKhWcaOP2Juq35QpFagAmfLcSbdlGy8tR1Qbxz4AfxGfglJtxSJC6eRZp55NKOXkOcMlgyAv3bNxi05MANCK_mALJjkrBBg5EOyAFPKwihR7ZEnKV0BgFGgHpO9ksmyKjUsyI_jHn2OYeg8_filG97QC_Q4ZPohhsuIKVE3NPRkzGPEuZe2E55oG-It_uv7z1XOzq9d3SM9wq-dx930FF2f1_R8MucQu-HygF6EOuTOp4Nb5yzLa5wbT8mj1vUJn93VffL55PjT4Wlx9v7tu8PVWeGl4LJw2JoKW2FqJTjzTQlaaeMr5TR68JJVuqqhRdXUDoEb4RQzrau51Og0E-U-ebXzbmO4HjFlu-mSx753A4YxWc6NFKpklZrQl_-gV2GMw3Sd5SXTUgtp2EQtd5SfnkkRW7uN3cbFG8vAzvnYOR97n8-08OJOO9YbbO7xP4FMgNkB37oeb_6js6uj89Vf-W8xiJ5A</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Yang, Jun Chang</creator><creator>Mun, Jaewan</creator><creator>Kwon, Se Young</creator><creator>Park, Seongjun</creator><creator>Bao, Zhenan</creator><creator>Park, Steve</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0972-1715</orcidid></search><sort><creationdate>20191101</creationdate><title>Electronic Skin: Recent Progress and Future Prospects for Skin‐Attachable Devices for Health Monitoring, Robotics, and Prosthetics</title><author>Yang, Jun Chang ; Mun, Jaewan ; Kwon, Se Young ; Park, Seongjun ; Bao, Zhenan ; Park, Steve</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5425-aef98ef49b6421cd307679c86a7ec0c51878b0fe6dbae0294a619fab257ea7143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biocompatible Materials - chemistry</topic><topic>Biosensing Techniques</topic><topic>Devices</topic><topic>electronic skins</topic><topic>Health</topic><topic>Humans</topic><topic>Mechanical Phenomena</topic><topic>Monitoring, Physiologic - instrumentation</topic><topic>Organic chemistry</topic><topic>Polymers - chemistry</topic><topic>Prostheses</topic><topic>Prostheses and Implants</topic><topic>prosthetics</topic><topic>Robotics</topic><topic>Robotics - instrumentation</topic><topic>Semiconductors</topic><topic>Signal processing</topic><topic>Skin</topic><topic>Stretchability</topic><topic>stretchable devices</topic><topic>Surface Properties</topic><topic>Tactile sensors (robotics)</topic><topic>Touch</topic><topic>wearable devices</topic><topic>Wearable Electronic Devices</topic><topic>Wireless communications</topic><topic>Wireless Technology - instrumentation</topic><topic>Wound Healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Jun Chang</creatorcontrib><creatorcontrib>Mun, Jaewan</creatorcontrib><creatorcontrib>Kwon, Se Young</creatorcontrib><creatorcontrib>Park, Seongjun</creatorcontrib><creatorcontrib>Bao, Zhenan</creatorcontrib><creatorcontrib>Park, Steve</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Jun Chang</au><au>Mun, Jaewan</au><au>Kwon, Se Young</au><au>Park, Seongjun</au><au>Bao, Zhenan</au><au>Park, Steve</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic Skin: Recent Progress and Future Prospects for Skin‐Attachable Devices for Health Monitoring, Robotics, and Prosthetics</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2019-11-01</date><risdate>2019</risdate><volume>31</volume><issue>48</issue><spage>e1904765</spage><epage>n/a</epage><pages>e1904765-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Recent progress in electronic skin or e‐skin research is broadly reviewed, focusing on technologies needed in three main applications: skin‐attachable electronics, robotics, and prosthetics. First, since e‐skin will be exposed to prolonged stresses of various kinds and needs to be conformally adhered to irregularly shaped surfaces, materials with intrinsic stretchability and self‐healing properties are of great importance. Second, tactile sensing capability such as the detection of pressure, strain, slip, force vector, and temperature are important for health monitoring in skin attachable devices, and to enable object manipulation and detection of surrounding environment for robotics and prosthetics. For skin attachable devices, chemical and electrophysiological sensing and wireless signal communication are of high significance to fully gauge the state of health of users and to ensure user comfort. For robotics and prosthetics, large‐area integration on 3D surfaces in a facile and scalable manner is critical. Furthermore, new signal processing strategies using neuromorphic devices are needed to efficiently process tactile information in a parallel and low power manner. For prosthetics, neural interfacing electrodes are of high importance. These topics are discussed, focusing on progress, current challenges, and future prospects. Recent progress in electronic skin research is broadly reviewed, focusing on the technologies required in the following three applications: skin‐attachable electronics, robotics, and prosthetics. Topics such as stretchability, self‐healing, biocompatibility, tactile sensing, chemical and electrophysiological sensing, wireless communication, large‐area integration, neuromorphic signal processing, and neural interfaces are discussed.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31538370</pmid><doi>10.1002/adma.201904765</doi><tpages>50</tpages><orcidid>https://orcid.org/0000-0002-0972-1715</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2019-11, Vol.31 (48), p.e1904765-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2295463186
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Biocompatible Materials - chemistry
Biosensing Techniques
Devices
electronic skins
Health
Humans
Mechanical Phenomena
Monitoring, Physiologic - instrumentation
Organic chemistry
Polymers - chemistry
Prostheses
Prostheses and Implants
prosthetics
Robotics
Robotics - instrumentation
Semiconductors
Signal processing
Skin
Stretchability
stretchable devices
Surface Properties
Tactile sensors (robotics)
Touch
wearable devices
Wearable Electronic Devices
Wireless communications
Wireless Technology - instrumentation
Wound Healing
title Electronic Skin: Recent Progress and Future Prospects for Skin‐Attachable Devices for Health Monitoring, Robotics, and Prosthetics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A43%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20Skin:%20Recent%20Progress%20and%20Future%20Prospects%20for%20Skin%E2%80%90Attachable%20Devices%20for%20Health%20Monitoring,%20Robotics,%20and%20Prosthetics&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Yang,%20Jun%20Chang&rft.date=2019-11-01&rft.volume=31&rft.issue=48&rft.spage=e1904765&rft.epage=n/a&rft.pages=e1904765-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201904765&rft_dat=%3Cproquest_cross%3E2317574591%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2317574591&rft_id=info:pmid/31538370&rfr_iscdi=true