Diverse respiratory capacity among Thermus strains from US Great Basin hot springs
Thermus species are thermophilic heterotrophs, with most capable of using a variety of organic and inorganic electron donors for respiration. Here, a combined cultivation-independent and -dependent approach was used to explore the diversity of Thermus in Great Boiling Spring (GBS) and Little Hot Cre...
Gespeichert in:
Veröffentlicht in: | Extremophiles : life under extreme conditions 2020, Vol.24 (1), p.71-80 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 80 |
---|---|
container_issue | 1 |
container_start_page | 71 |
container_title | Extremophiles : life under extreme conditions |
container_volume | 24 |
creator | Zhou, En-Min Adegboruwa, Arinola L. Mefferd, Chrisabelle C. Bhute, Shrikant S. Murugapiran, Senthil K. Dodsworth, Jeremy A. Thomas, Scott C. Bengtson, Amanda J. Liu, Lan Xian, Wen-Dong Li, Wen-Jun Hedlund, Brian P. |
description | Thermus
species are thermophilic heterotrophs, with most capable of using a variety of organic and inorganic electron donors for respiration. Here, a combined cultivation-independent and -dependent approach was used to explore the diversity of
Thermus
in Great Boiling Spring (GBS) and Little Hot Creek (LHC) in the US Great Basin. A cultivation-independent 16S rRNA gene survey of ten LHC sites showed that
Thermus
made up 0–3.5% of sequences and were predominately
Thermus thermophilus
. 189
Thermus
isolates from GBS and LHC were affiliated with
T. aquaticus
(73.0%),
T. oshimai
(25.4%),
T. sediminis
(1.1%), and
T. thermophilus
(0.5%), with
T. aquaticus
and
T. oshimai
forming biogeographic clusters. 22 strains were selected for characterization, including chemolithotrophic oxidation of thiosulfate and arsenite, and reduction of ferric iron, polysulfide, and nitrate, revealing phenotypic diversity and broad respiratory capability within each species. PCR demonstrated the wide distribution of aerobic arsenite oxidase genes. A GBS sediment metaproteome contained sulfite oxidase and Fe
3+
ABC transporter permease peptides, suggesting sulfur and iron transformations in situ. This study expands our knowledge of the physiological diversity of
Thermus
, suggesting widespread chemolithotrophic and anaerobic respiration phenotypes, and providing a foundation for better understanding the ecology of this genus in thermal ecosystems. |
doi_str_mv | 10.1007/s00792-019-01131-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2293981132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2292434831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-af52c351b79aee390749dd1ca14ff707fb47e588f460893d4d89cc2ed541dece3</originalsourceid><addsrcrecordid>eNp9kElLxTAQx4Mo7l_AgwS8eKlmsrw2R32uIAgu55CXTrXy2j4zrfC-vdG6gAcPWSC_-Wfmx9geiCMQIj-mtFmZCbBpgYJsssI2QSuVaSvs6ucdMjExsMG2iF6EAJMe1tmGAqOMBNhkd2f1G0ZCHpEWdfR9F5c8-IUPdb_kvunaJ_7wjLEZiFMffd0Sr2LX8Md7fhnR9_zUU93y567ntIh1-0Q7bK3yc8Ldr3ObPV6cP0yvspvby-vpyU0WVG76zFdGBmVglluPqKzItS1LCB50VeUir2Y6R1MUlZ6IwqpSl4UNQWJpNJQYUG2zwzF3EbvXAal3TU0B53PfYjeQk9IqWyQxMqEHf9CXboht6u6DklrpQkGi5EiF2BFFrFwaqPFx6UC4D-NuNO6Scfdp3E1S0f5X9DBrsPwp-VacADUCox6Mv3__E_sO9XiLeA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2292434831</pqid></control><display><type>article</type><title>Diverse respiratory capacity among Thermus strains from US Great Basin hot springs</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Zhou, En-Min ; Adegboruwa, Arinola L. ; Mefferd, Chrisabelle C. ; Bhute, Shrikant S. ; Murugapiran, Senthil K. ; Dodsworth, Jeremy A. ; Thomas, Scott C. ; Bengtson, Amanda J. ; Liu, Lan ; Xian, Wen-Dong ; Li, Wen-Jun ; Hedlund, Brian P.</creator><creatorcontrib>Zhou, En-Min ; Adegboruwa, Arinola L. ; Mefferd, Chrisabelle C. ; Bhute, Shrikant S. ; Murugapiran, Senthil K. ; Dodsworth, Jeremy A. ; Thomas, Scott C. ; Bengtson, Amanda J. ; Liu, Lan ; Xian, Wen-Dong ; Li, Wen-Jun ; Hedlund, Brian P.</creatorcontrib><description>Thermus
species are thermophilic heterotrophs, with most capable of using a variety of organic and inorganic electron donors for respiration. Here, a combined cultivation-independent and -dependent approach was used to explore the diversity of
Thermus
in Great Boiling Spring (GBS) and Little Hot Creek (LHC) in the US Great Basin. A cultivation-independent 16S rRNA gene survey of ten LHC sites showed that
Thermus
made up 0–3.5% of sequences and were predominately
Thermus thermophilus
. 189
Thermus
isolates from GBS and LHC were affiliated with
T. aquaticus
(73.0%),
T. oshimai
(25.4%),
T. sediminis
(1.1%), and
T. thermophilus
(0.5%), with
T. aquaticus
and
T. oshimai
forming biogeographic clusters. 22 strains were selected for characterization, including chemolithotrophic oxidation of thiosulfate and arsenite, and reduction of ferric iron, polysulfide, and nitrate, revealing phenotypic diversity and broad respiratory capability within each species. PCR demonstrated the wide distribution of aerobic arsenite oxidase genes. A GBS sediment metaproteome contained sulfite oxidase and Fe
3+
ABC transporter permease peptides, suggesting sulfur and iron transformations in situ. This study expands our knowledge of the physiological diversity of
Thermus
, suggesting widespread chemolithotrophic and anaerobic respiration phenotypes, and providing a foundation for better understanding the ecology of this genus in thermal ecosystems.</description><identifier>ISSN: 1431-0651</identifier><identifier>EISSN: 1433-4909</identifier><identifier>DOI: 10.1007/s00792-019-01131-6</identifier><identifier>PMID: 31535211</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>12th International Congress on Extremophiles ; ABC transporter ; Anaerobic respiration ; Arsenite ; Biochemistry ; Biodiversity ; Biomedical and Life Sciences ; Biotechnology ; Coastal inlets ; Cultivation ; DNA ; DNA, Bacterial ; Ecosystem ; Ecosystems ; Genes ; Heterotrophic organisms ; Heterotrophs ; Hot Springs ; Iron ; Life Sciences ; Microbial Ecology ; Microbiology ; Nitrates ; Nucleotide sequence ; Oxidase ; Oxidation ; PCR ; Peptides ; Permease ; Phenotypes ; Phylogeny ; RNA, Ribosomal, 16S ; rRNA 16S ; Space life sciences ; Special Feature: Original Paper ; Sulfite ; Sulfite oxidase ; Sulfur ; Sulphur ; Surveying ; Thermus ; Thiosulfate ; Thiosulfates ; Yeast</subject><ispartof>Extremophiles : life under extreme conditions, 2020, Vol.24 (1), p.71-80</ispartof><rights>Springer Japan KK, part of Springer Nature 2019</rights><rights>Extremophiles is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-af52c351b79aee390749dd1ca14ff707fb47e588f460893d4d89cc2ed541dece3</citedby><cites>FETCH-LOGICAL-c375t-af52c351b79aee390749dd1ca14ff707fb47e588f460893d4d89cc2ed541dece3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00792-019-01131-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00792-019-01131-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31535211$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, En-Min</creatorcontrib><creatorcontrib>Adegboruwa, Arinola L.</creatorcontrib><creatorcontrib>Mefferd, Chrisabelle C.</creatorcontrib><creatorcontrib>Bhute, Shrikant S.</creatorcontrib><creatorcontrib>Murugapiran, Senthil K.</creatorcontrib><creatorcontrib>Dodsworth, Jeremy A.</creatorcontrib><creatorcontrib>Thomas, Scott C.</creatorcontrib><creatorcontrib>Bengtson, Amanda J.</creatorcontrib><creatorcontrib>Liu, Lan</creatorcontrib><creatorcontrib>Xian, Wen-Dong</creatorcontrib><creatorcontrib>Li, Wen-Jun</creatorcontrib><creatorcontrib>Hedlund, Brian P.</creatorcontrib><title>Diverse respiratory capacity among Thermus strains from US Great Basin hot springs</title><title>Extremophiles : life under extreme conditions</title><addtitle>Extremophiles</addtitle><addtitle>Extremophiles</addtitle><description>Thermus
species are thermophilic heterotrophs, with most capable of using a variety of organic and inorganic electron donors for respiration. Here, a combined cultivation-independent and -dependent approach was used to explore the diversity of
Thermus
in Great Boiling Spring (GBS) and Little Hot Creek (LHC) in the US Great Basin. A cultivation-independent 16S rRNA gene survey of ten LHC sites showed that
Thermus
made up 0–3.5% of sequences and were predominately
Thermus thermophilus
. 189
Thermus
isolates from GBS and LHC were affiliated with
T. aquaticus
(73.0%),
T. oshimai
(25.4%),
T. sediminis
(1.1%), and
T. thermophilus
(0.5%), with
T. aquaticus
and
T. oshimai
forming biogeographic clusters. 22 strains were selected for characterization, including chemolithotrophic oxidation of thiosulfate and arsenite, and reduction of ferric iron, polysulfide, and nitrate, revealing phenotypic diversity and broad respiratory capability within each species. PCR demonstrated the wide distribution of aerobic arsenite oxidase genes. A GBS sediment metaproteome contained sulfite oxidase and Fe
3+
ABC transporter permease peptides, suggesting sulfur and iron transformations in situ. This study expands our knowledge of the physiological diversity of
Thermus
, suggesting widespread chemolithotrophic and anaerobic respiration phenotypes, and providing a foundation for better understanding the ecology of this genus in thermal ecosystems.</description><subject>12th International Congress on Extremophiles</subject><subject>ABC transporter</subject><subject>Anaerobic respiration</subject><subject>Arsenite</subject><subject>Biochemistry</subject><subject>Biodiversity</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Coastal inlets</subject><subject>Cultivation</subject><subject>DNA</subject><subject>DNA, Bacterial</subject><subject>Ecosystem</subject><subject>Ecosystems</subject><subject>Genes</subject><subject>Heterotrophic organisms</subject><subject>Heterotrophs</subject><subject>Hot Springs</subject><subject>Iron</subject><subject>Life Sciences</subject><subject>Microbial Ecology</subject><subject>Microbiology</subject><subject>Nitrates</subject><subject>Nucleotide sequence</subject><subject>Oxidase</subject><subject>Oxidation</subject><subject>PCR</subject><subject>Peptides</subject><subject>Permease</subject><subject>Phenotypes</subject><subject>Phylogeny</subject><subject>RNA, Ribosomal, 16S</subject><subject>rRNA 16S</subject><subject>Space life sciences</subject><subject>Special Feature: Original Paper</subject><subject>Sulfite</subject><subject>Sulfite oxidase</subject><subject>Sulfur</subject><subject>Sulphur</subject><subject>Surveying</subject><subject>Thermus</subject><subject>Thiosulfate</subject><subject>Thiosulfates</subject><subject>Yeast</subject><issn>1431-0651</issn><issn>1433-4909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kElLxTAQx4Mo7l_AgwS8eKlmsrw2R32uIAgu55CXTrXy2j4zrfC-vdG6gAcPWSC_-Wfmx9geiCMQIj-mtFmZCbBpgYJsssI2QSuVaSvs6ucdMjExsMG2iF6EAJMe1tmGAqOMBNhkd2f1G0ZCHpEWdfR9F5c8-IUPdb_kvunaJ_7wjLEZiFMffd0Sr2LX8Md7fhnR9_zUU93y567ntIh1-0Q7bK3yc8Ldr3ObPV6cP0yvspvby-vpyU0WVG76zFdGBmVglluPqKzItS1LCB50VeUir2Y6R1MUlZ6IwqpSl4UNQWJpNJQYUG2zwzF3EbvXAal3TU0B53PfYjeQk9IqWyQxMqEHf9CXboht6u6DklrpQkGi5EiF2BFFrFwaqPFx6UC4D-NuNO6Scfdp3E1S0f5X9DBrsPwp-VacADUCox6Mv3__E_sO9XiLeA</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Zhou, En-Min</creator><creator>Adegboruwa, Arinola L.</creator><creator>Mefferd, Chrisabelle C.</creator><creator>Bhute, Shrikant S.</creator><creator>Murugapiran, Senthil K.</creator><creator>Dodsworth, Jeremy A.</creator><creator>Thomas, Scott C.</creator><creator>Bengtson, Amanda J.</creator><creator>Liu, Lan</creator><creator>Xian, Wen-Dong</creator><creator>Li, Wen-Jun</creator><creator>Hedlund, Brian P.</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H95</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>2020</creationdate><title>Diverse respiratory capacity among Thermus strains from US Great Basin hot springs</title><author>Zhou, En-Min ; Adegboruwa, Arinola L. ; Mefferd, Chrisabelle C. ; Bhute, Shrikant S. ; Murugapiran, Senthil K. ; Dodsworth, Jeremy A. ; Thomas, Scott C. ; Bengtson, Amanda J. ; Liu, Lan ; Xian, Wen-Dong ; Li, Wen-Jun ; Hedlund, Brian P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-af52c351b79aee390749dd1ca14ff707fb47e588f460893d4d89cc2ed541dece3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>12th International Congress on Extremophiles</topic><topic>ABC transporter</topic><topic>Anaerobic respiration</topic><topic>Arsenite</topic><topic>Biochemistry</topic><topic>Biodiversity</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Coastal inlets</topic><topic>Cultivation</topic><topic>DNA</topic><topic>DNA, Bacterial</topic><topic>Ecosystem</topic><topic>Ecosystems</topic><topic>Genes</topic><topic>Heterotrophic organisms</topic><topic>Heterotrophs</topic><topic>Hot Springs</topic><topic>Iron</topic><topic>Life Sciences</topic><topic>Microbial Ecology</topic><topic>Microbiology</topic><topic>Nitrates</topic><topic>Nucleotide sequence</topic><topic>Oxidase</topic><topic>Oxidation</topic><topic>PCR</topic><topic>Peptides</topic><topic>Permease</topic><topic>Phenotypes</topic><topic>Phylogeny</topic><topic>RNA, Ribosomal, 16S</topic><topic>rRNA 16S</topic><topic>Space life sciences</topic><topic>Special Feature: Original Paper</topic><topic>Sulfite</topic><topic>Sulfite oxidase</topic><topic>Sulfur</topic><topic>Sulphur</topic><topic>Surveying</topic><topic>Thermus</topic><topic>Thiosulfate</topic><topic>Thiosulfates</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, En-Min</creatorcontrib><creatorcontrib>Adegboruwa, Arinola L.</creatorcontrib><creatorcontrib>Mefferd, Chrisabelle C.</creatorcontrib><creatorcontrib>Bhute, Shrikant S.</creatorcontrib><creatorcontrib>Murugapiran, Senthil K.</creatorcontrib><creatorcontrib>Dodsworth, Jeremy A.</creatorcontrib><creatorcontrib>Thomas, Scott C.</creatorcontrib><creatorcontrib>Bengtson, Amanda J.</creatorcontrib><creatorcontrib>Liu, Lan</creatorcontrib><creatorcontrib>Xian, Wen-Dong</creatorcontrib><creatorcontrib>Li, Wen-Jun</creatorcontrib><creatorcontrib>Hedlund, Brian P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Extremophiles : life under extreme conditions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, En-Min</au><au>Adegboruwa, Arinola L.</au><au>Mefferd, Chrisabelle C.</au><au>Bhute, Shrikant S.</au><au>Murugapiran, Senthil K.</au><au>Dodsworth, Jeremy A.</au><au>Thomas, Scott C.</au><au>Bengtson, Amanda J.</au><au>Liu, Lan</au><au>Xian, Wen-Dong</au><au>Li, Wen-Jun</au><au>Hedlund, Brian P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diverse respiratory capacity among Thermus strains from US Great Basin hot springs</atitle><jtitle>Extremophiles : life under extreme conditions</jtitle><stitle>Extremophiles</stitle><addtitle>Extremophiles</addtitle><date>2020</date><risdate>2020</risdate><volume>24</volume><issue>1</issue><spage>71</spage><epage>80</epage><pages>71-80</pages><issn>1431-0651</issn><eissn>1433-4909</eissn><abstract>Thermus
species are thermophilic heterotrophs, with most capable of using a variety of organic and inorganic electron donors for respiration. Here, a combined cultivation-independent and -dependent approach was used to explore the diversity of
Thermus
in Great Boiling Spring (GBS) and Little Hot Creek (LHC) in the US Great Basin. A cultivation-independent 16S rRNA gene survey of ten LHC sites showed that
Thermus
made up 0–3.5% of sequences and were predominately
Thermus thermophilus
. 189
Thermus
isolates from GBS and LHC were affiliated with
T. aquaticus
(73.0%),
T. oshimai
(25.4%),
T. sediminis
(1.1%), and
T. thermophilus
(0.5%), with
T. aquaticus
and
T. oshimai
forming biogeographic clusters. 22 strains were selected for characterization, including chemolithotrophic oxidation of thiosulfate and arsenite, and reduction of ferric iron, polysulfide, and nitrate, revealing phenotypic diversity and broad respiratory capability within each species. PCR demonstrated the wide distribution of aerobic arsenite oxidase genes. A GBS sediment metaproteome contained sulfite oxidase and Fe
3+
ABC transporter permease peptides, suggesting sulfur and iron transformations in situ. This study expands our knowledge of the physiological diversity of
Thermus
, suggesting widespread chemolithotrophic and anaerobic respiration phenotypes, and providing a foundation for better understanding the ecology of this genus in thermal ecosystems.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><pmid>31535211</pmid><doi>10.1007/s00792-019-01131-6</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1431-0651 |
ispartof | Extremophiles : life under extreme conditions, 2020, Vol.24 (1), p.71-80 |
issn | 1431-0651 1433-4909 |
language | eng |
recordid | cdi_proquest_miscellaneous_2293981132 |
source | MEDLINE; SpringerLink Journals |
subjects | 12th International Congress on Extremophiles ABC transporter Anaerobic respiration Arsenite Biochemistry Biodiversity Biomedical and Life Sciences Biotechnology Coastal inlets Cultivation DNA DNA, Bacterial Ecosystem Ecosystems Genes Heterotrophic organisms Heterotrophs Hot Springs Iron Life Sciences Microbial Ecology Microbiology Nitrates Nucleotide sequence Oxidase Oxidation PCR Peptides Permease Phenotypes Phylogeny RNA, Ribosomal, 16S rRNA 16S Space life sciences Special Feature: Original Paper Sulfite Sulfite oxidase Sulfur Sulphur Surveying Thermus Thiosulfate Thiosulfates Yeast |
title | Diverse respiratory capacity among Thermus strains from US Great Basin hot springs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A44%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diverse%20respiratory%20capacity%20among%20Thermus%20strains%20from%20US%20Great%20Basin%20hot%20springs&rft.jtitle=Extremophiles%20:%20life%20under%20extreme%20conditions&rft.au=Zhou,%20En-Min&rft.date=2020&rft.volume=24&rft.issue=1&rft.spage=71&rft.epage=80&rft.pages=71-80&rft.issn=1431-0651&rft.eissn=1433-4909&rft_id=info:doi/10.1007/s00792-019-01131-6&rft_dat=%3Cproquest_cross%3E2292434831%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2292434831&rft_id=info:pmid/31535211&rfr_iscdi=true |