Diverse respiratory capacity among Thermus strains from US Great Basin hot springs

Thermus species are thermophilic heterotrophs, with most capable of using a variety of organic and inorganic electron donors for respiration. Here, a combined cultivation-independent and -dependent approach was used to explore the diversity of Thermus in Great Boiling Spring (GBS) and Little Hot Cre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Extremophiles : life under extreme conditions 2020, Vol.24 (1), p.71-80
Hauptverfasser: Zhou, En-Min, Adegboruwa, Arinola L., Mefferd, Chrisabelle C., Bhute, Shrikant S., Murugapiran, Senthil K., Dodsworth, Jeremy A., Thomas, Scott C., Bengtson, Amanda J., Liu, Lan, Xian, Wen-Dong, Li, Wen-Jun, Hedlund, Brian P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 80
container_issue 1
container_start_page 71
container_title Extremophiles : life under extreme conditions
container_volume 24
creator Zhou, En-Min
Adegboruwa, Arinola L.
Mefferd, Chrisabelle C.
Bhute, Shrikant S.
Murugapiran, Senthil K.
Dodsworth, Jeremy A.
Thomas, Scott C.
Bengtson, Amanda J.
Liu, Lan
Xian, Wen-Dong
Li, Wen-Jun
Hedlund, Brian P.
description Thermus species are thermophilic heterotrophs, with most capable of using a variety of organic and inorganic electron donors for respiration. Here, a combined cultivation-independent and -dependent approach was used to explore the diversity of Thermus in Great Boiling Spring (GBS) and Little Hot Creek (LHC) in the US Great Basin. A cultivation-independent 16S rRNA gene survey of ten LHC sites showed that Thermus made up 0–3.5% of sequences and were predominately Thermus thermophilus . 189 Thermus isolates from GBS and LHC were affiliated with T. aquaticus (73.0%), T. oshimai (25.4%), T. sediminis (1.1%), and T. thermophilus (0.5%), with T. aquaticus and T. oshimai forming biogeographic clusters. 22 strains were selected for characterization, including chemolithotrophic oxidation of thiosulfate and arsenite, and reduction of ferric iron, polysulfide, and nitrate, revealing phenotypic diversity and broad respiratory capability within each species. PCR demonstrated the wide distribution of aerobic arsenite oxidase genes. A GBS sediment metaproteome contained sulfite oxidase and Fe 3+ ABC transporter permease peptides, suggesting sulfur and iron transformations in situ. This study expands our knowledge of the physiological diversity of Thermus , suggesting widespread chemolithotrophic and anaerobic respiration phenotypes, and providing a foundation for better understanding the ecology of this genus in thermal ecosystems.
doi_str_mv 10.1007/s00792-019-01131-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2293981132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2292434831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-af52c351b79aee390749dd1ca14ff707fb47e588f460893d4d89cc2ed541dece3</originalsourceid><addsrcrecordid>eNp9kElLxTAQx4Mo7l_AgwS8eKlmsrw2R32uIAgu55CXTrXy2j4zrfC-vdG6gAcPWSC_-Wfmx9geiCMQIj-mtFmZCbBpgYJsssI2QSuVaSvs6ucdMjExsMG2iF6EAJMe1tmGAqOMBNhkd2f1G0ZCHpEWdfR9F5c8-IUPdb_kvunaJ_7wjLEZiFMffd0Sr2LX8Md7fhnR9_zUU93y567ntIh1-0Q7bK3yc8Ldr3ObPV6cP0yvspvby-vpyU0WVG76zFdGBmVglluPqKzItS1LCB50VeUir2Y6R1MUlZ6IwqpSl4UNQWJpNJQYUG2zwzF3EbvXAal3TU0B53PfYjeQk9IqWyQxMqEHf9CXboht6u6DklrpQkGi5EiF2BFFrFwaqPFx6UC4D-NuNO6Scfdp3E1S0f5X9DBrsPwp-VacADUCox6Mv3__E_sO9XiLeA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2292434831</pqid></control><display><type>article</type><title>Diverse respiratory capacity among Thermus strains from US Great Basin hot springs</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Zhou, En-Min ; Adegboruwa, Arinola L. ; Mefferd, Chrisabelle C. ; Bhute, Shrikant S. ; Murugapiran, Senthil K. ; Dodsworth, Jeremy A. ; Thomas, Scott C. ; Bengtson, Amanda J. ; Liu, Lan ; Xian, Wen-Dong ; Li, Wen-Jun ; Hedlund, Brian P.</creator><creatorcontrib>Zhou, En-Min ; Adegboruwa, Arinola L. ; Mefferd, Chrisabelle C. ; Bhute, Shrikant S. ; Murugapiran, Senthil K. ; Dodsworth, Jeremy A. ; Thomas, Scott C. ; Bengtson, Amanda J. ; Liu, Lan ; Xian, Wen-Dong ; Li, Wen-Jun ; Hedlund, Brian P.</creatorcontrib><description>Thermus species are thermophilic heterotrophs, with most capable of using a variety of organic and inorganic electron donors for respiration. Here, a combined cultivation-independent and -dependent approach was used to explore the diversity of Thermus in Great Boiling Spring (GBS) and Little Hot Creek (LHC) in the US Great Basin. A cultivation-independent 16S rRNA gene survey of ten LHC sites showed that Thermus made up 0–3.5% of sequences and were predominately Thermus thermophilus . 189 Thermus isolates from GBS and LHC were affiliated with T. aquaticus (73.0%), T. oshimai (25.4%), T. sediminis (1.1%), and T. thermophilus (0.5%), with T. aquaticus and T. oshimai forming biogeographic clusters. 22 strains were selected for characterization, including chemolithotrophic oxidation of thiosulfate and arsenite, and reduction of ferric iron, polysulfide, and nitrate, revealing phenotypic diversity and broad respiratory capability within each species. PCR demonstrated the wide distribution of aerobic arsenite oxidase genes. A GBS sediment metaproteome contained sulfite oxidase and Fe 3+ ABC transporter permease peptides, suggesting sulfur and iron transformations in situ. This study expands our knowledge of the physiological diversity of Thermus , suggesting widespread chemolithotrophic and anaerobic respiration phenotypes, and providing a foundation for better understanding the ecology of this genus in thermal ecosystems.</description><identifier>ISSN: 1431-0651</identifier><identifier>EISSN: 1433-4909</identifier><identifier>DOI: 10.1007/s00792-019-01131-6</identifier><identifier>PMID: 31535211</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>12th International Congress on Extremophiles ; ABC transporter ; Anaerobic respiration ; Arsenite ; Biochemistry ; Biodiversity ; Biomedical and Life Sciences ; Biotechnology ; Coastal inlets ; Cultivation ; DNA ; DNA, Bacterial ; Ecosystem ; Ecosystems ; Genes ; Heterotrophic organisms ; Heterotrophs ; Hot Springs ; Iron ; Life Sciences ; Microbial Ecology ; Microbiology ; Nitrates ; Nucleotide sequence ; Oxidase ; Oxidation ; PCR ; Peptides ; Permease ; Phenotypes ; Phylogeny ; RNA, Ribosomal, 16S ; rRNA 16S ; Space life sciences ; Special Feature: Original Paper ; Sulfite ; Sulfite oxidase ; Sulfur ; Sulphur ; Surveying ; Thermus ; Thiosulfate ; Thiosulfates ; Yeast</subject><ispartof>Extremophiles : life under extreme conditions, 2020, Vol.24 (1), p.71-80</ispartof><rights>Springer Japan KK, part of Springer Nature 2019</rights><rights>Extremophiles is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-af52c351b79aee390749dd1ca14ff707fb47e588f460893d4d89cc2ed541dece3</citedby><cites>FETCH-LOGICAL-c375t-af52c351b79aee390749dd1ca14ff707fb47e588f460893d4d89cc2ed541dece3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00792-019-01131-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00792-019-01131-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31535211$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, En-Min</creatorcontrib><creatorcontrib>Adegboruwa, Arinola L.</creatorcontrib><creatorcontrib>Mefferd, Chrisabelle C.</creatorcontrib><creatorcontrib>Bhute, Shrikant S.</creatorcontrib><creatorcontrib>Murugapiran, Senthil K.</creatorcontrib><creatorcontrib>Dodsworth, Jeremy A.</creatorcontrib><creatorcontrib>Thomas, Scott C.</creatorcontrib><creatorcontrib>Bengtson, Amanda J.</creatorcontrib><creatorcontrib>Liu, Lan</creatorcontrib><creatorcontrib>Xian, Wen-Dong</creatorcontrib><creatorcontrib>Li, Wen-Jun</creatorcontrib><creatorcontrib>Hedlund, Brian P.</creatorcontrib><title>Diverse respiratory capacity among Thermus strains from US Great Basin hot springs</title><title>Extremophiles : life under extreme conditions</title><addtitle>Extremophiles</addtitle><addtitle>Extremophiles</addtitle><description>Thermus species are thermophilic heterotrophs, with most capable of using a variety of organic and inorganic electron donors for respiration. Here, a combined cultivation-independent and -dependent approach was used to explore the diversity of Thermus in Great Boiling Spring (GBS) and Little Hot Creek (LHC) in the US Great Basin. A cultivation-independent 16S rRNA gene survey of ten LHC sites showed that Thermus made up 0–3.5% of sequences and were predominately Thermus thermophilus . 189 Thermus isolates from GBS and LHC were affiliated with T. aquaticus (73.0%), T. oshimai (25.4%), T. sediminis (1.1%), and T. thermophilus (0.5%), with T. aquaticus and T. oshimai forming biogeographic clusters. 22 strains were selected for characterization, including chemolithotrophic oxidation of thiosulfate and arsenite, and reduction of ferric iron, polysulfide, and nitrate, revealing phenotypic diversity and broad respiratory capability within each species. PCR demonstrated the wide distribution of aerobic arsenite oxidase genes. A GBS sediment metaproteome contained sulfite oxidase and Fe 3+ ABC transporter permease peptides, suggesting sulfur and iron transformations in situ. This study expands our knowledge of the physiological diversity of Thermus , suggesting widespread chemolithotrophic and anaerobic respiration phenotypes, and providing a foundation for better understanding the ecology of this genus in thermal ecosystems.</description><subject>12th International Congress on Extremophiles</subject><subject>ABC transporter</subject><subject>Anaerobic respiration</subject><subject>Arsenite</subject><subject>Biochemistry</subject><subject>Biodiversity</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Coastal inlets</subject><subject>Cultivation</subject><subject>DNA</subject><subject>DNA, Bacterial</subject><subject>Ecosystem</subject><subject>Ecosystems</subject><subject>Genes</subject><subject>Heterotrophic organisms</subject><subject>Heterotrophs</subject><subject>Hot Springs</subject><subject>Iron</subject><subject>Life Sciences</subject><subject>Microbial Ecology</subject><subject>Microbiology</subject><subject>Nitrates</subject><subject>Nucleotide sequence</subject><subject>Oxidase</subject><subject>Oxidation</subject><subject>PCR</subject><subject>Peptides</subject><subject>Permease</subject><subject>Phenotypes</subject><subject>Phylogeny</subject><subject>RNA, Ribosomal, 16S</subject><subject>rRNA 16S</subject><subject>Space life sciences</subject><subject>Special Feature: Original Paper</subject><subject>Sulfite</subject><subject>Sulfite oxidase</subject><subject>Sulfur</subject><subject>Sulphur</subject><subject>Surveying</subject><subject>Thermus</subject><subject>Thiosulfate</subject><subject>Thiosulfates</subject><subject>Yeast</subject><issn>1431-0651</issn><issn>1433-4909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kElLxTAQx4Mo7l_AgwS8eKlmsrw2R32uIAgu55CXTrXy2j4zrfC-vdG6gAcPWSC_-Wfmx9geiCMQIj-mtFmZCbBpgYJsssI2QSuVaSvs6ucdMjExsMG2iF6EAJMe1tmGAqOMBNhkd2f1G0ZCHpEWdfR9F5c8-IUPdb_kvunaJ_7wjLEZiFMffd0Sr2LX8Md7fhnR9_zUU93y567ntIh1-0Q7bK3yc8Ldr3ObPV6cP0yvspvby-vpyU0WVG76zFdGBmVglluPqKzItS1LCB50VeUir2Y6R1MUlZ6IwqpSl4UNQWJpNJQYUG2zwzF3EbvXAal3TU0B53PfYjeQk9IqWyQxMqEHf9CXboht6u6DklrpQkGi5EiF2BFFrFwaqPFx6UC4D-NuNO6Scfdp3E1S0f5X9DBrsPwp-VacADUCox6Mv3__E_sO9XiLeA</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Zhou, En-Min</creator><creator>Adegboruwa, Arinola L.</creator><creator>Mefferd, Chrisabelle C.</creator><creator>Bhute, Shrikant S.</creator><creator>Murugapiran, Senthil K.</creator><creator>Dodsworth, Jeremy A.</creator><creator>Thomas, Scott C.</creator><creator>Bengtson, Amanda J.</creator><creator>Liu, Lan</creator><creator>Xian, Wen-Dong</creator><creator>Li, Wen-Jun</creator><creator>Hedlund, Brian P.</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H95</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>2020</creationdate><title>Diverse respiratory capacity among Thermus strains from US Great Basin hot springs</title><author>Zhou, En-Min ; Adegboruwa, Arinola L. ; Mefferd, Chrisabelle C. ; Bhute, Shrikant S. ; Murugapiran, Senthil K. ; Dodsworth, Jeremy A. ; Thomas, Scott C. ; Bengtson, Amanda J. ; Liu, Lan ; Xian, Wen-Dong ; Li, Wen-Jun ; Hedlund, Brian P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-af52c351b79aee390749dd1ca14ff707fb47e588f460893d4d89cc2ed541dece3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>12th International Congress on Extremophiles</topic><topic>ABC transporter</topic><topic>Anaerobic respiration</topic><topic>Arsenite</topic><topic>Biochemistry</topic><topic>Biodiversity</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Coastal inlets</topic><topic>Cultivation</topic><topic>DNA</topic><topic>DNA, Bacterial</topic><topic>Ecosystem</topic><topic>Ecosystems</topic><topic>Genes</topic><topic>Heterotrophic organisms</topic><topic>Heterotrophs</topic><topic>Hot Springs</topic><topic>Iron</topic><topic>Life Sciences</topic><topic>Microbial Ecology</topic><topic>Microbiology</topic><topic>Nitrates</topic><topic>Nucleotide sequence</topic><topic>Oxidase</topic><topic>Oxidation</topic><topic>PCR</topic><topic>Peptides</topic><topic>Permease</topic><topic>Phenotypes</topic><topic>Phylogeny</topic><topic>RNA, Ribosomal, 16S</topic><topic>rRNA 16S</topic><topic>Space life sciences</topic><topic>Special Feature: Original Paper</topic><topic>Sulfite</topic><topic>Sulfite oxidase</topic><topic>Sulfur</topic><topic>Sulphur</topic><topic>Surveying</topic><topic>Thermus</topic><topic>Thiosulfate</topic><topic>Thiosulfates</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, En-Min</creatorcontrib><creatorcontrib>Adegboruwa, Arinola L.</creatorcontrib><creatorcontrib>Mefferd, Chrisabelle C.</creatorcontrib><creatorcontrib>Bhute, Shrikant S.</creatorcontrib><creatorcontrib>Murugapiran, Senthil K.</creatorcontrib><creatorcontrib>Dodsworth, Jeremy A.</creatorcontrib><creatorcontrib>Thomas, Scott C.</creatorcontrib><creatorcontrib>Bengtson, Amanda J.</creatorcontrib><creatorcontrib>Liu, Lan</creatorcontrib><creatorcontrib>Xian, Wen-Dong</creatorcontrib><creatorcontrib>Li, Wen-Jun</creatorcontrib><creatorcontrib>Hedlund, Brian P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Extremophiles : life under extreme conditions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, En-Min</au><au>Adegboruwa, Arinola L.</au><au>Mefferd, Chrisabelle C.</au><au>Bhute, Shrikant S.</au><au>Murugapiran, Senthil K.</au><au>Dodsworth, Jeremy A.</au><au>Thomas, Scott C.</au><au>Bengtson, Amanda J.</au><au>Liu, Lan</au><au>Xian, Wen-Dong</au><au>Li, Wen-Jun</au><au>Hedlund, Brian P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diverse respiratory capacity among Thermus strains from US Great Basin hot springs</atitle><jtitle>Extremophiles : life under extreme conditions</jtitle><stitle>Extremophiles</stitle><addtitle>Extremophiles</addtitle><date>2020</date><risdate>2020</risdate><volume>24</volume><issue>1</issue><spage>71</spage><epage>80</epage><pages>71-80</pages><issn>1431-0651</issn><eissn>1433-4909</eissn><abstract>Thermus species are thermophilic heterotrophs, with most capable of using a variety of organic and inorganic electron donors for respiration. Here, a combined cultivation-independent and -dependent approach was used to explore the diversity of Thermus in Great Boiling Spring (GBS) and Little Hot Creek (LHC) in the US Great Basin. A cultivation-independent 16S rRNA gene survey of ten LHC sites showed that Thermus made up 0–3.5% of sequences and were predominately Thermus thermophilus . 189 Thermus isolates from GBS and LHC were affiliated with T. aquaticus (73.0%), T. oshimai (25.4%), T. sediminis (1.1%), and T. thermophilus (0.5%), with T. aquaticus and T. oshimai forming biogeographic clusters. 22 strains were selected for characterization, including chemolithotrophic oxidation of thiosulfate and arsenite, and reduction of ferric iron, polysulfide, and nitrate, revealing phenotypic diversity and broad respiratory capability within each species. PCR demonstrated the wide distribution of aerobic arsenite oxidase genes. A GBS sediment metaproteome contained sulfite oxidase and Fe 3+ ABC transporter permease peptides, suggesting sulfur and iron transformations in situ. This study expands our knowledge of the physiological diversity of Thermus , suggesting widespread chemolithotrophic and anaerobic respiration phenotypes, and providing a foundation for better understanding the ecology of this genus in thermal ecosystems.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><pmid>31535211</pmid><doi>10.1007/s00792-019-01131-6</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1431-0651
ispartof Extremophiles : life under extreme conditions, 2020, Vol.24 (1), p.71-80
issn 1431-0651
1433-4909
language eng
recordid cdi_proquest_miscellaneous_2293981132
source MEDLINE; SpringerLink Journals
subjects 12th International Congress on Extremophiles
ABC transporter
Anaerobic respiration
Arsenite
Biochemistry
Biodiversity
Biomedical and Life Sciences
Biotechnology
Coastal inlets
Cultivation
DNA
DNA, Bacterial
Ecosystem
Ecosystems
Genes
Heterotrophic organisms
Heterotrophs
Hot Springs
Iron
Life Sciences
Microbial Ecology
Microbiology
Nitrates
Nucleotide sequence
Oxidase
Oxidation
PCR
Peptides
Permease
Phenotypes
Phylogeny
RNA, Ribosomal, 16S
rRNA 16S
Space life sciences
Special Feature: Original Paper
Sulfite
Sulfite oxidase
Sulfur
Sulphur
Surveying
Thermus
Thiosulfate
Thiosulfates
Yeast
title Diverse respiratory capacity among Thermus strains from US Great Basin hot springs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A44%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diverse%20respiratory%20capacity%20among%20Thermus%20strains%20from%20US%20Great%20Basin%20hot%20springs&rft.jtitle=Extremophiles%20:%20life%20under%20extreme%20conditions&rft.au=Zhou,%20En-Min&rft.date=2020&rft.volume=24&rft.issue=1&rft.spage=71&rft.epage=80&rft.pages=71-80&rft.issn=1431-0651&rft.eissn=1433-4909&rft_id=info:doi/10.1007/s00792-019-01131-6&rft_dat=%3Cproquest_cross%3E2292434831%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2292434831&rft_id=info:pmid/31535211&rfr_iscdi=true