Daytime colour preference in Drosophila depends on the circadian clock and TRP channels
Light discrimination according to colour can confer survival advantages by guiding animals towards food and shelter and away from potentially harmful situations 1 , 2 . Such colour-dependent behaviour can be learned or innate. Data on innate colour preference in mammals remain controversial 3 and th...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2019-10, Vol.574 (7776), p.108-111 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 111 |
---|---|
container_issue | 7776 |
container_start_page | 108 |
container_title | Nature (London) |
container_volume | 574 |
creator | Lazopulo, Stanislav Lazopulo, Andrey Baker, James D. Syed, Sheyum |
description | Light discrimination according to colour can confer survival advantages by guiding animals towards food and shelter and away from potentially harmful situations
1
,
2
. Such colour-dependent behaviour can be learned or innate. Data on innate colour preference in mammals remain controversial
3
and there are limited data for simpler organisms
4
–
7
. Here we show that, when given a choice among blue, green and dim light, fruit flies exhibit an unexpectedly complex pattern of colour preference that changes according to the time of day. Flies show a strong preference for green in the early morning and late afternoon, a reduced green preference at midday and a robust avoidance of blue throughout the day. Genetic manipulations reveal that the peaks in green preference require rhodopsin-based visual photoreceptors and are controlled by the circadian clock. The midday reduction in green preference in favour of dim light depends on the transient receptor potential (TRP) channels dTRPA1 and Pyrexia, and is also timed by the clock. By contrast, avoidance of blue light is primarily mediated by multidendritic neurons, requires rhodopsin 7 and the TRP channel Painless, and is independent of the clock. Our findings show that several TRP channels are involved in colour-driven behaviour in
Drosophila
, and reveal distinct pathways of innate colour preference that coordinate the behavioural dynamics of flies in ambient light.
Innate colour preference in adult fruit flies changes with the time of day, and depends on rhodopsins 1 and 7, TRP channels and the circadian clock. |
doi_str_mv | 10.1038/s41586-019-1571-y |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2293972538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A601578958</galeid><sourcerecordid>A601578958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c577t-b6b17855b9ff275ebb24931ddff0c75b7e0d72ed04d2276b2afbd789d991b6353</originalsourceid><addsrcrecordid>eNp1kk1vEzEQhi0EoqHwA7ggi15AaMEf67V9jFIKlSpAJahHy1-bbNnYW3tXIv--jlIoQfTkwzzzyDPzAvASo_cYUfEh15iJpkJYVphxXG0fgRmueVPVjeCPwQwhIiokaHMEnuV8jRBimNdPwRHFjNaE0Bm4OtXbsdt4aGMfpwSH5FuffLAedgGeppjjsO56DZ0ffHAZxgDHdcG7ZLXrdIC2j_Yn1MHB5eU3aNc6BN_n5-BJq_vsX9y9x-DH2cfl4nN18fXT-WJ-UVnG-ViZxmAuGDOybQln3hhSS4qda1tkOTPcI8eJd6h2hPDGEN0ax4V0UmLTUEaPwZu9d0jxZvJ5VJsuW9_3Ovg4ZUWIpJITRkVBT_5Br8vEofxOEYooJ1IgfE-tdO9VF9o4Jm13UjVvUFmzkGznev0fyg7djfobensA2RhG_2tc6Slndf798lD47mF2vrxafDmk8Z625UC5nEwNqdvotFUYqV001D4aqkRD7aKhtqXn1d34k9l496fjdxYKQPZALqWw8ul-Pw9bbwGPPL_C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2303729801</pqid></control><display><type>article</type><title>Daytime colour preference in Drosophila depends on the circadian clock and TRP channels</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Lazopulo, Stanislav ; Lazopulo, Andrey ; Baker, James D. ; Syed, Sheyum</creator><creatorcontrib>Lazopulo, Stanislav ; Lazopulo, Andrey ; Baker, James D. ; Syed, Sheyum</creatorcontrib><description>Light discrimination according to colour can confer survival advantages by guiding animals towards food and shelter and away from potentially harmful situations
1
,
2
. Such colour-dependent behaviour can be learned or innate. Data on innate colour preference in mammals remain controversial
3
and there are limited data for simpler organisms
4
–
7
. Here we show that, when given a choice among blue, green and dim light, fruit flies exhibit an unexpectedly complex pattern of colour preference that changes according to the time of day. Flies show a strong preference for green in the early morning and late afternoon, a reduced green preference at midday and a robust avoidance of blue throughout the day. Genetic manipulations reveal that the peaks in green preference require rhodopsin-based visual photoreceptors and are controlled by the circadian clock. The midday reduction in green preference in favour of dim light depends on the transient receptor potential (TRP) channels dTRPA1 and Pyrexia, and is also timed by the clock. By contrast, avoidance of blue light is primarily mediated by multidendritic neurons, requires rhodopsin 7 and the TRP channel Painless, and is independent of the clock. Our findings show that several TRP channels are involved in colour-driven behaviour in
Drosophila
, and reveal distinct pathways of innate colour preference that coordinate the behavioural dynamics of flies in ambient light.
Innate colour preference in adult fruit flies changes with the time of day, and depends on rhodopsins 1 and 7, TRP channels and the circadian clock.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-019-1571-y</identifier><identifier>PMID: 31534223</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/51 ; 14/63 ; 631/378/2613/2141 ; 631/378/2649/1723 ; 631/378/3917 ; 64/24 ; Analysis ; Animals ; Arthropod Antennae - physiology ; Arthropod Antennae - radiation effects ; Avoidance ; Behavior ; Biological clocks ; Channels ; Circadian Clocks - physiology ; Circadian Clocks - radiation effects ; Circadian rhythm ; Circadian rhythms ; Color ; Dendrites - physiology ; Dendrites - radiation effects ; Drosophila ; Drosophila melanogaster - growth & development ; Drosophila melanogaster - physiology ; Drosophila melanogaster - radiation effects ; Environmental aspects ; Experiments ; Female ; Fever ; Food ; Fruit flies ; Genetic aspects ; Humanities and Social Sciences ; Influence ; Insects ; Larva - physiology ; Larva - radiation effects ; Letter ; Light - adverse effects ; Male ; multidisciplinary ; Mutation ; Neurons ; Neurons - physiology ; Neurons - radiation effects ; Photoreception ; Photoreceptors ; Rhodopsin ; Science ; Science (multidisciplinary) ; Sensory Rhodopsins - metabolism ; Sleep ; Time Factors ; Time of use ; Transient Receptor Potential Channels - metabolism ; Transient receptor potential proteins ; Vision, Ocular - radiation effects ; Visual discrimination</subject><ispartof>Nature (London), 2019-10, Vol.574 (7776), p.108-111</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>COPYRIGHT 2019 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Oct 3, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c577t-b6b17855b9ff275ebb24931ddff0c75b7e0d72ed04d2276b2afbd789d991b6353</citedby><cites>FETCH-LOGICAL-c577t-b6b17855b9ff275ebb24931ddff0c75b7e0d72ed04d2276b2afbd789d991b6353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-019-1571-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-019-1571-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31534223$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lazopulo, Stanislav</creatorcontrib><creatorcontrib>Lazopulo, Andrey</creatorcontrib><creatorcontrib>Baker, James D.</creatorcontrib><creatorcontrib>Syed, Sheyum</creatorcontrib><title>Daytime colour preference in Drosophila depends on the circadian clock and TRP channels</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Light discrimination according to colour can confer survival advantages by guiding animals towards food and shelter and away from potentially harmful situations
1
,
2
. Such colour-dependent behaviour can be learned or innate. Data on innate colour preference in mammals remain controversial
3
and there are limited data for simpler organisms
4
–
7
. Here we show that, when given a choice among blue, green and dim light, fruit flies exhibit an unexpectedly complex pattern of colour preference that changes according to the time of day. Flies show a strong preference for green in the early morning and late afternoon, a reduced green preference at midday and a robust avoidance of blue throughout the day. Genetic manipulations reveal that the peaks in green preference require rhodopsin-based visual photoreceptors and are controlled by the circadian clock. The midday reduction in green preference in favour of dim light depends on the transient receptor potential (TRP) channels dTRPA1 and Pyrexia, and is also timed by the clock. By contrast, avoidance of blue light is primarily mediated by multidendritic neurons, requires rhodopsin 7 and the TRP channel Painless, and is independent of the clock. Our findings show that several TRP channels are involved in colour-driven behaviour in
Drosophila
, and reveal distinct pathways of innate colour preference that coordinate the behavioural dynamics of flies in ambient light.
Innate colour preference in adult fruit flies changes with the time of day, and depends on rhodopsins 1 and 7, TRP channels and the circadian clock.</description><subject>13/51</subject><subject>14/63</subject><subject>631/378/2613/2141</subject><subject>631/378/2649/1723</subject><subject>631/378/3917</subject><subject>64/24</subject><subject>Analysis</subject><subject>Animals</subject><subject>Arthropod Antennae - physiology</subject><subject>Arthropod Antennae - radiation effects</subject><subject>Avoidance</subject><subject>Behavior</subject><subject>Biological clocks</subject><subject>Channels</subject><subject>Circadian Clocks - physiology</subject><subject>Circadian Clocks - radiation effects</subject><subject>Circadian rhythm</subject><subject>Circadian rhythms</subject><subject>Color</subject><subject>Dendrites - physiology</subject><subject>Dendrites - radiation effects</subject><subject>Drosophila</subject><subject>Drosophila melanogaster - growth & development</subject><subject>Drosophila melanogaster - physiology</subject><subject>Drosophila melanogaster - radiation effects</subject><subject>Environmental aspects</subject><subject>Experiments</subject><subject>Female</subject><subject>Fever</subject><subject>Food</subject><subject>Fruit flies</subject><subject>Genetic aspects</subject><subject>Humanities and Social Sciences</subject><subject>Influence</subject><subject>Insects</subject><subject>Larva - physiology</subject><subject>Larva - radiation effects</subject><subject>Letter</subject><subject>Light - adverse effects</subject><subject>Male</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Neurons - radiation effects</subject><subject>Photoreception</subject><subject>Photoreceptors</subject><subject>Rhodopsin</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sensory Rhodopsins - metabolism</subject><subject>Sleep</subject><subject>Time Factors</subject><subject>Time of use</subject><subject>Transient Receptor Potential Channels - metabolism</subject><subject>Transient receptor potential proteins</subject><subject>Vision, Ocular - radiation effects</subject><subject>Visual discrimination</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kk1vEzEQhi0EoqHwA7ggi15AaMEf67V9jFIKlSpAJahHy1-bbNnYW3tXIv--jlIoQfTkwzzzyDPzAvASo_cYUfEh15iJpkJYVphxXG0fgRmueVPVjeCPwQwhIiokaHMEnuV8jRBimNdPwRHFjNaE0Bm4OtXbsdt4aGMfpwSH5FuffLAedgGeppjjsO56DZ0ffHAZxgDHdcG7ZLXrdIC2j_Yn1MHB5eU3aNc6BN_n5-BJq_vsX9y9x-DH2cfl4nN18fXT-WJ-UVnG-ViZxmAuGDOybQln3hhSS4qda1tkOTPcI8eJd6h2hPDGEN0ax4V0UmLTUEaPwZu9d0jxZvJ5VJsuW9_3Ovg4ZUWIpJITRkVBT_5Br8vEofxOEYooJ1IgfE-tdO9VF9o4Jm13UjVvUFmzkGznev0fyg7djfobensA2RhG_2tc6Slndf798lD47mF2vrxafDmk8Z625UC5nEwNqdvotFUYqV001D4aqkRD7aKhtqXn1d34k9l496fjdxYKQPZALqWw8ul-Pw9bbwGPPL_C</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Lazopulo, Stanislav</creator><creator>Lazopulo, Andrey</creator><creator>Baker, James D.</creator><creator>Syed, Sheyum</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>201910</creationdate><title>Daytime colour preference in Drosophila depends on the circadian clock and TRP channels</title><author>Lazopulo, Stanislav ; Lazopulo, Andrey ; Baker, James D. ; Syed, Sheyum</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c577t-b6b17855b9ff275ebb24931ddff0c75b7e0d72ed04d2276b2afbd789d991b6353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>13/51</topic><topic>14/63</topic><topic>631/378/2613/2141</topic><topic>631/378/2649/1723</topic><topic>631/378/3917</topic><topic>64/24</topic><topic>Analysis</topic><topic>Animals</topic><topic>Arthropod Antennae - physiology</topic><topic>Arthropod Antennae - radiation effects</topic><topic>Avoidance</topic><topic>Behavior</topic><topic>Biological clocks</topic><topic>Channels</topic><topic>Circadian Clocks - physiology</topic><topic>Circadian Clocks - radiation effects</topic><topic>Circadian rhythm</topic><topic>Circadian rhythms</topic><topic>Color</topic><topic>Dendrites - physiology</topic><topic>Dendrites - radiation effects</topic><topic>Drosophila</topic><topic>Drosophila melanogaster - growth & development</topic><topic>Drosophila melanogaster - physiology</topic><topic>Drosophila melanogaster - radiation effects</topic><topic>Environmental aspects</topic><topic>Experiments</topic><topic>Female</topic><topic>Fever</topic><topic>Food</topic><topic>Fruit flies</topic><topic>Genetic aspects</topic><topic>Humanities and Social Sciences</topic><topic>Influence</topic><topic>Insects</topic><topic>Larva - physiology</topic><topic>Larva - radiation effects</topic><topic>Letter</topic><topic>Light - adverse effects</topic><topic>Male</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Neurons - radiation effects</topic><topic>Photoreception</topic><topic>Photoreceptors</topic><topic>Rhodopsin</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sensory Rhodopsins - metabolism</topic><topic>Sleep</topic><topic>Time Factors</topic><topic>Time of use</topic><topic>Transient Receptor Potential Channels - metabolism</topic><topic>Transient receptor potential proteins</topic><topic>Vision, Ocular - radiation effects</topic><topic>Visual discrimination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lazopulo, Stanislav</creatorcontrib><creatorcontrib>Lazopulo, Andrey</creatorcontrib><creatorcontrib>Baker, James D.</creatorcontrib><creatorcontrib>Syed, Sheyum</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lazopulo, Stanislav</au><au>Lazopulo, Andrey</au><au>Baker, James D.</au><au>Syed, Sheyum</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Daytime colour preference in Drosophila depends on the circadian clock and TRP channels</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2019-10</date><risdate>2019</risdate><volume>574</volume><issue>7776</issue><spage>108</spage><epage>111</epage><pages>108-111</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Light discrimination according to colour can confer survival advantages by guiding animals towards food and shelter and away from potentially harmful situations
1
,
2
. Such colour-dependent behaviour can be learned or innate. Data on innate colour preference in mammals remain controversial
3
and there are limited data for simpler organisms
4
–
7
. Here we show that, when given a choice among blue, green and dim light, fruit flies exhibit an unexpectedly complex pattern of colour preference that changes according to the time of day. Flies show a strong preference for green in the early morning and late afternoon, a reduced green preference at midday and a robust avoidance of blue throughout the day. Genetic manipulations reveal that the peaks in green preference require rhodopsin-based visual photoreceptors and are controlled by the circadian clock. The midday reduction in green preference in favour of dim light depends on the transient receptor potential (TRP) channels dTRPA1 and Pyrexia, and is also timed by the clock. By contrast, avoidance of blue light is primarily mediated by multidendritic neurons, requires rhodopsin 7 and the TRP channel Painless, and is independent of the clock. Our findings show that several TRP channels are involved in colour-driven behaviour in
Drosophila
, and reveal distinct pathways of innate colour preference that coordinate the behavioural dynamics of flies in ambient light.
Innate colour preference in adult fruit flies changes with the time of day, and depends on rhodopsins 1 and 7, TRP channels and the circadian clock.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31534223</pmid><doi>10.1038/s41586-019-1571-y</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2019-10, Vol.574 (7776), p.108-111 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_2293972538 |
source | MEDLINE; SpringerLink Journals; Nature Journals Online |
subjects | 13/51 14/63 631/378/2613/2141 631/378/2649/1723 631/378/3917 64/24 Analysis Animals Arthropod Antennae - physiology Arthropod Antennae - radiation effects Avoidance Behavior Biological clocks Channels Circadian Clocks - physiology Circadian Clocks - radiation effects Circadian rhythm Circadian rhythms Color Dendrites - physiology Dendrites - radiation effects Drosophila Drosophila melanogaster - growth & development Drosophila melanogaster - physiology Drosophila melanogaster - radiation effects Environmental aspects Experiments Female Fever Food Fruit flies Genetic aspects Humanities and Social Sciences Influence Insects Larva - physiology Larva - radiation effects Letter Light - adverse effects Male multidisciplinary Mutation Neurons Neurons - physiology Neurons - radiation effects Photoreception Photoreceptors Rhodopsin Science Science (multidisciplinary) Sensory Rhodopsins - metabolism Sleep Time Factors Time of use Transient Receptor Potential Channels - metabolism Transient receptor potential proteins Vision, Ocular - radiation effects Visual discrimination |
title | Daytime colour preference in Drosophila depends on the circadian clock and TRP channels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T02%3A58%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Daytime%20colour%20preference%20in%20Drosophila%20depends%20on%20the%20circadian%20clock%20and%20TRP%20channels&rft.jtitle=Nature%20(London)&rft.au=Lazopulo,%20Stanislav&rft.date=2019-10&rft.volume=574&rft.issue=7776&rft.spage=108&rft.epage=111&rft.pages=108-111&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-019-1571-y&rft_dat=%3Cgale_proqu%3EA601578958%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2303729801&rft_id=info:pmid/31534223&rft_galeid=A601578958&rfr_iscdi=true |