Thermostability enhancement of the Pseudomonas fluorescens esterase I by in vivo folding selection in Thermus thermophilus

Prolonged stability is a desired property for the biotechnological application of enzymes since it allows its reutilization, contributing to making biocatalytic processes more economically competitive with respect to chemical synthesis. In this study, we have applied selection by folding interferenc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology and bioengineering 2020-01, Vol.117 (1), p.30-38
Hauptverfasser: Mate, Diana M., Rivera, Noé R., Sanchez‐Freire, Esther, Ayala, Juan A., Berenguer, José, Hidalgo, Aurelio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 38
container_issue 1
container_start_page 30
container_title Biotechnology and bioengineering
container_volume 117
creator Mate, Diana M.
Rivera, Noé R.
Sanchez‐Freire, Esther
Ayala, Juan A.
Berenguer, José
Hidalgo, Aurelio
description Prolonged stability is a desired property for the biotechnological application of enzymes since it allows its reutilization, contributing to making biocatalytic processes more economically competitive with respect to chemical synthesis. In this study, we have applied selection by folding interference at high temperature in Thermus thermophilus to obtain thermostable variants of the esterase I from Pseudomonas fluorescens (PFEI). The most thermostable variant (Q11L/A191S) showed a melting temperature (Tm) of 77.3 ± 0.1°C (4.6°C higher than the wild‐type) and a half‐life of over 13 hr at 65°C (7.9‐fold better than the wild‐type), with unchanged kinetic parameters. Stabilizing mutations Q11L and A191S were incorporated into PFEI variant L30P, previously described to be enantioselective in the hydrolysis of the (−)‐enantiomer of the Vince lactam. The final variant Q11L/L30P/A191S showed a significant improvement in thermal stability (Tm of 80.8 ± 0.1°C and a half‐life of 65 min at 75°C), while retaining enantioselectivity (E > 100). Structural studies revealed that A191S establishes a hydrogen bond network between a V‐shaped hairpin and the α/β hydrolase domain that leads to higher rigidity and thus would contribute to explaining the increase in stability. Prolonged stability is a desired property for the biotechnological application of enzymes since it allows its reutilization, contributing to making biocatalytic processes more economically competitive with respect to chemical synthesis. In this study, we have applied selection by folding interference at high temperature in Thermus thermophilus to obtain thermostable variants of the esterase I from Pseudomonas fluorescens (PFEI). The most thermostable variant (Q11L/A191S) showed a melting temperature (Tm) of 77.3 ± 0.1°C (4.6°C higher than the wild‐type) and a half‐life of over 13 hr at 65°C (7.9‐fold better than the wild‐type), with unchanged kinetic parameters.
doi_str_mv 10.1002/bit.27170
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2293005302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2293005302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3900-20f2d2cfef40570b75a282efd79003ebda6ff062c59077efb9de9be81e3ecc453</originalsourceid><addsrcrecordid>eNp1kcFO3DAQhq0KVBbaQ1-gssQFDoGJTeL1sSCgKyHBYXu2HGfcNXLsrZ2Atk9fL0s5IKE5WKP59M1YPyHfajirAdh558YzJmoBn8isBikqYBL2yAwA2oo3kh2Qw5wfSyvmbfuZHPC6YVIAm5G_yxWmIeZRd867cUMxrHQwOGAYabR0XCF9yDj1cYhBZ2r9FBNmgyFTzCMmnZEuaLehLtAn9xSpjb534TfN6NGMLobt5GXLlLe6sm29cn7KX8i-1T7j19f3iPy6uV5e_azu7m8XVz_uKsMlQMXAsp4Zi_YCGgGdaDSbM7S9KFOOXa9ba6FlppEgBNpO9ig7nNfI0ZiLhh-Rk513neKfqRytBlc-4L0OGKesGJMcoOHACnr8Dn2MUwrlOsV4Kdnydkud7iiTYs4JrVonN-i0UTWobSCqBKJeAins91fj1A3Yv5H_EyjA-Q54dh43H5vU5WK5U_4DTL6XIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2323296362</pqid></control><display><type>article</type><title>Thermostability enhancement of the Pseudomonas fluorescens esterase I by in vivo folding selection in Thermus thermophilus</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Mate, Diana M. ; Rivera, Noé R. ; Sanchez‐Freire, Esther ; Ayala, Juan A. ; Berenguer, José ; Hidalgo, Aurelio</creator><creatorcontrib>Mate, Diana M. ; Rivera, Noé R. ; Sanchez‐Freire, Esther ; Ayala, Juan A. ; Berenguer, José ; Hidalgo, Aurelio</creatorcontrib><description>Prolonged stability is a desired property for the biotechnological application of enzymes since it allows its reutilization, contributing to making biocatalytic processes more economically competitive with respect to chemical synthesis. In this study, we have applied selection by folding interference at high temperature in Thermus thermophilus to obtain thermostable variants of the esterase I from Pseudomonas fluorescens (PFEI). The most thermostable variant (Q11L/A191S) showed a melting temperature (Tm) of 77.3 ± 0.1°C (4.6°C higher than the wild‐type) and a half‐life of over 13 hr at 65°C (7.9‐fold better than the wild‐type), with unchanged kinetic parameters. Stabilizing mutations Q11L and A191S were incorporated into PFEI variant L30P, previously described to be enantioselective in the hydrolysis of the (−)‐enantiomer of the Vince lactam. The final variant Q11L/L30P/A191S showed a significant improvement in thermal stability (Tm of 80.8 ± 0.1°C and a half‐life of 65 min at 75°C), while retaining enantioselectivity (E &gt; 100). Structural studies revealed that A191S establishes a hydrogen bond network between a V‐shaped hairpin and the α/β hydrolase domain that leads to higher rigidity and thus would contribute to explaining the increase in stability. Prolonged stability is a desired property for the biotechnological application of enzymes since it allows its reutilization, contributing to making biocatalytic processes more economically competitive with respect to chemical synthesis. In this study, we have applied selection by folding interference at high temperature in Thermus thermophilus to obtain thermostable variants of the esterase I from Pseudomonas fluorescens (PFEI). The most thermostable variant (Q11L/A191S) showed a melting temperature (Tm) of 77.3 ± 0.1°C (4.6°C higher than the wild‐type) and a half‐life of over 13 hr at 65°C (7.9‐fold better than the wild‐type), with unchanged kinetic parameters.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.27170</identifier><identifier>PMID: 31529702</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Amides ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Chemical synthesis ; directed evolution ; Directed Molecular Evolution ; Enantiomers ; Enzyme Stability ; Esterase ; Esterases - chemistry ; Esterases - genetics ; Esterases - metabolism ; Folding ; High temperature ; Hot Temperature ; Hydrogen bonds ; Hydrolase ; in vivo selection ; Melt temperature ; Models, Molecular ; Mutation ; Organic chemistry ; Protein Engineering ; Protein Folding ; Pseudomonas fluorescens ; Pseudomonas fluorescens - enzymology ; Pseudomonas fluorescens - genetics ; Rigidity ; Thermal stability ; thermostability ; Thermus thermophilus ; Thermus thermophilus - genetics ; Thermus thermophilus - metabolism ; Yeast</subject><ispartof>Biotechnology and bioengineering, 2020-01, Vol.117 (1), p.30-38</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3900-20f2d2cfef40570b75a282efd79003ebda6ff062c59077efb9de9be81e3ecc453</citedby><cites>FETCH-LOGICAL-c3900-20f2d2cfef40570b75a282efd79003ebda6ff062c59077efb9de9be81e3ecc453</cites><orcidid>0000-0001-5740-5584 ; 0000-0002-9689-6272</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbit.27170$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbit.27170$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31529702$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mate, Diana M.</creatorcontrib><creatorcontrib>Rivera, Noé R.</creatorcontrib><creatorcontrib>Sanchez‐Freire, Esther</creatorcontrib><creatorcontrib>Ayala, Juan A.</creatorcontrib><creatorcontrib>Berenguer, José</creatorcontrib><creatorcontrib>Hidalgo, Aurelio</creatorcontrib><title>Thermostability enhancement of the Pseudomonas fluorescens esterase I by in vivo folding selection in Thermus thermophilus</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol Bioeng</addtitle><description>Prolonged stability is a desired property for the biotechnological application of enzymes since it allows its reutilization, contributing to making biocatalytic processes more economically competitive with respect to chemical synthesis. In this study, we have applied selection by folding interference at high temperature in Thermus thermophilus to obtain thermostable variants of the esterase I from Pseudomonas fluorescens (PFEI). The most thermostable variant (Q11L/A191S) showed a melting temperature (Tm) of 77.3 ± 0.1°C (4.6°C higher than the wild‐type) and a half‐life of over 13 hr at 65°C (7.9‐fold better than the wild‐type), with unchanged kinetic parameters. Stabilizing mutations Q11L and A191S were incorporated into PFEI variant L30P, previously described to be enantioselective in the hydrolysis of the (−)‐enantiomer of the Vince lactam. The final variant Q11L/L30P/A191S showed a significant improvement in thermal stability (Tm of 80.8 ± 0.1°C and a half‐life of 65 min at 75°C), while retaining enantioselectivity (E &gt; 100). Structural studies revealed that A191S establishes a hydrogen bond network between a V‐shaped hairpin and the α/β hydrolase domain that leads to higher rigidity and thus would contribute to explaining the increase in stability. Prolonged stability is a desired property for the biotechnological application of enzymes since it allows its reutilization, contributing to making biocatalytic processes more economically competitive with respect to chemical synthesis. In this study, we have applied selection by folding interference at high temperature in Thermus thermophilus to obtain thermostable variants of the esterase I from Pseudomonas fluorescens (PFEI). The most thermostable variant (Q11L/A191S) showed a melting temperature (Tm) of 77.3 ± 0.1°C (4.6°C higher than the wild‐type) and a half‐life of over 13 hr at 65°C (7.9‐fold better than the wild‐type), with unchanged kinetic parameters.</description><subject>Amides</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Chemical synthesis</subject><subject>directed evolution</subject><subject>Directed Molecular Evolution</subject><subject>Enantiomers</subject><subject>Enzyme Stability</subject><subject>Esterase</subject><subject>Esterases - chemistry</subject><subject>Esterases - genetics</subject><subject>Esterases - metabolism</subject><subject>Folding</subject><subject>High temperature</subject><subject>Hot Temperature</subject><subject>Hydrogen bonds</subject><subject>Hydrolase</subject><subject>in vivo selection</subject><subject>Melt temperature</subject><subject>Models, Molecular</subject><subject>Mutation</subject><subject>Organic chemistry</subject><subject>Protein Engineering</subject><subject>Protein Folding</subject><subject>Pseudomonas fluorescens</subject><subject>Pseudomonas fluorescens - enzymology</subject><subject>Pseudomonas fluorescens - genetics</subject><subject>Rigidity</subject><subject>Thermal stability</subject><subject>thermostability</subject><subject>Thermus thermophilus</subject><subject>Thermus thermophilus - genetics</subject><subject>Thermus thermophilus - metabolism</subject><subject>Yeast</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kcFO3DAQhq0KVBbaQ1-gssQFDoGJTeL1sSCgKyHBYXu2HGfcNXLsrZ2Atk9fL0s5IKE5WKP59M1YPyHfajirAdh558YzJmoBn8isBikqYBL2yAwA2oo3kh2Qw5wfSyvmbfuZHPC6YVIAm5G_yxWmIeZRd867cUMxrHQwOGAYabR0XCF9yDj1cYhBZ2r9FBNmgyFTzCMmnZEuaLehLtAn9xSpjb534TfN6NGMLobt5GXLlLe6sm29cn7KX8i-1T7j19f3iPy6uV5e_azu7m8XVz_uKsMlQMXAsp4Zi_YCGgGdaDSbM7S9KFOOXa9ba6FlppEgBNpO9ig7nNfI0ZiLhh-Rk513neKfqRytBlc-4L0OGKesGJMcoOHACnr8Dn2MUwrlOsV4Kdnydkud7iiTYs4JrVonN-i0UTWobSCqBKJeAins91fj1A3Yv5H_EyjA-Q54dh43H5vU5WK5U_4DTL6XIw</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Mate, Diana M.</creator><creator>Rivera, Noé R.</creator><creator>Sanchez‐Freire, Esther</creator><creator>Ayala, Juan A.</creator><creator>Berenguer, José</creator><creator>Hidalgo, Aurelio</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5740-5584</orcidid><orcidid>https://orcid.org/0000-0002-9689-6272</orcidid></search><sort><creationdate>202001</creationdate><title>Thermostability enhancement of the Pseudomonas fluorescens esterase I by in vivo folding selection in Thermus thermophilus</title><author>Mate, Diana M. ; Rivera, Noé R. ; Sanchez‐Freire, Esther ; Ayala, Juan A. ; Berenguer, José ; Hidalgo, Aurelio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3900-20f2d2cfef40570b75a282efd79003ebda6ff062c59077efb9de9be81e3ecc453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amides</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Chemical synthesis</topic><topic>directed evolution</topic><topic>Directed Molecular Evolution</topic><topic>Enantiomers</topic><topic>Enzyme Stability</topic><topic>Esterase</topic><topic>Esterases - chemistry</topic><topic>Esterases - genetics</topic><topic>Esterases - metabolism</topic><topic>Folding</topic><topic>High temperature</topic><topic>Hot Temperature</topic><topic>Hydrogen bonds</topic><topic>Hydrolase</topic><topic>in vivo selection</topic><topic>Melt temperature</topic><topic>Models, Molecular</topic><topic>Mutation</topic><topic>Organic chemistry</topic><topic>Protein Engineering</topic><topic>Protein Folding</topic><topic>Pseudomonas fluorescens</topic><topic>Pseudomonas fluorescens - enzymology</topic><topic>Pseudomonas fluorescens - genetics</topic><topic>Rigidity</topic><topic>Thermal stability</topic><topic>thermostability</topic><topic>Thermus thermophilus</topic><topic>Thermus thermophilus - genetics</topic><topic>Thermus thermophilus - metabolism</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mate, Diana M.</creatorcontrib><creatorcontrib>Rivera, Noé R.</creatorcontrib><creatorcontrib>Sanchez‐Freire, Esther</creatorcontrib><creatorcontrib>Ayala, Juan A.</creatorcontrib><creatorcontrib>Berenguer, José</creatorcontrib><creatorcontrib>Hidalgo, Aurelio</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mate, Diana M.</au><au>Rivera, Noé R.</au><au>Sanchez‐Freire, Esther</au><au>Ayala, Juan A.</au><au>Berenguer, José</au><au>Hidalgo, Aurelio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermostability enhancement of the Pseudomonas fluorescens esterase I by in vivo folding selection in Thermus thermophilus</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol Bioeng</addtitle><date>2020-01</date><risdate>2020</risdate><volume>117</volume><issue>1</issue><spage>30</spage><epage>38</epage><pages>30-38</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><abstract>Prolonged stability is a desired property for the biotechnological application of enzymes since it allows its reutilization, contributing to making biocatalytic processes more economically competitive with respect to chemical synthesis. In this study, we have applied selection by folding interference at high temperature in Thermus thermophilus to obtain thermostable variants of the esterase I from Pseudomonas fluorescens (PFEI). The most thermostable variant (Q11L/A191S) showed a melting temperature (Tm) of 77.3 ± 0.1°C (4.6°C higher than the wild‐type) and a half‐life of over 13 hr at 65°C (7.9‐fold better than the wild‐type), with unchanged kinetic parameters. Stabilizing mutations Q11L and A191S were incorporated into PFEI variant L30P, previously described to be enantioselective in the hydrolysis of the (−)‐enantiomer of the Vince lactam. The final variant Q11L/L30P/A191S showed a significant improvement in thermal stability (Tm of 80.8 ± 0.1°C and a half‐life of 65 min at 75°C), while retaining enantioselectivity (E &gt; 100). Structural studies revealed that A191S establishes a hydrogen bond network between a V‐shaped hairpin and the α/β hydrolase domain that leads to higher rigidity and thus would contribute to explaining the increase in stability. Prolonged stability is a desired property for the biotechnological application of enzymes since it allows its reutilization, contributing to making biocatalytic processes more economically competitive with respect to chemical synthesis. In this study, we have applied selection by folding interference at high temperature in Thermus thermophilus to obtain thermostable variants of the esterase I from Pseudomonas fluorescens (PFEI). The most thermostable variant (Q11L/A191S) showed a melting temperature (Tm) of 77.3 ± 0.1°C (4.6°C higher than the wild‐type) and a half‐life of over 13 hr at 65°C (7.9‐fold better than the wild‐type), with unchanged kinetic parameters.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31529702</pmid><doi>10.1002/bit.27170</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5740-5584</orcidid><orcidid>https://orcid.org/0000-0002-9689-6272</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0006-3592
ispartof Biotechnology and bioengineering, 2020-01, Vol.117 (1), p.30-38
issn 0006-3592
1097-0290
language eng
recordid cdi_proquest_miscellaneous_2293005302
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Amides
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Chemical synthesis
directed evolution
Directed Molecular Evolution
Enantiomers
Enzyme Stability
Esterase
Esterases - chemistry
Esterases - genetics
Esterases - metabolism
Folding
High temperature
Hot Temperature
Hydrogen bonds
Hydrolase
in vivo selection
Melt temperature
Models, Molecular
Mutation
Organic chemistry
Protein Engineering
Protein Folding
Pseudomonas fluorescens
Pseudomonas fluorescens - enzymology
Pseudomonas fluorescens - genetics
Rigidity
Thermal stability
thermostability
Thermus thermophilus
Thermus thermophilus - genetics
Thermus thermophilus - metabolism
Yeast
title Thermostability enhancement of the Pseudomonas fluorescens esterase I by in vivo folding selection in Thermus thermophilus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T04%3A03%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermostability%20enhancement%20of%20the%20Pseudomonas%20fluorescens%20esterase%20I%20by%20in%20vivo%20folding%20selection%20in%20Thermus%20thermophilus&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Mate,%20Diana%20M.&rft.date=2020-01&rft.volume=117&rft.issue=1&rft.spage=30&rft.epage=38&rft.pages=30-38&rft.issn=0006-3592&rft.eissn=1097-0290&rft_id=info:doi/10.1002/bit.27170&rft_dat=%3Cproquest_cross%3E2293005302%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2323296362&rft_id=info:pmid/31529702&rfr_iscdi=true