High pressure response of 1H NMR chemical shifts of purine nucleotides
The study of the pressure response by NMR spectroscopy provides information on the thermodynamics of conformational equilibria in proteins and nucleic acids. For obtaining a database for expected pressure effects on free nucleotides and nucleotides bound in macromolecular complexes, the pressure res...
Gespeichert in:
Veröffentlicht in: | Biophysical chemistry 2019-11, Vol.254, p.106261-106261, Article 106261 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 106261 |
---|---|
container_issue | |
container_start_page | 106261 |
container_title | Biophysical chemistry |
container_volume | 254 |
creator | Munte, Claudia E. Karl, Matthias Kauter, Waldemar Eberlein, Lukas Pham, Thuy-Vy Erlach, Markus Beck Kast, Stefan M. Kremer, Werner Kalbitzer, Hans Robert |
description | The study of the pressure response by NMR spectroscopy provides information on the thermodynamics of conformational equilibria in proteins and nucleic acids. For obtaining a database for expected pressure effects on free nucleotides and nucleotides bound in macromolecular complexes, the pressure response of 1H chemical shifts and J-coupling constants of the purine 5′-ribonucleotides AMP, ADP, ATP, GMP, GDP, and GTP were studied in the absence and presence of Mg2+-ions. Experiments are supported by quantum-chemical calculations of populations and chemical shift differences in order to corroborate structural interpretations and to estimate missing data for AMP. The preference of the ribose S puckering obtained from the analysis of the experimental J-couplings is also confirmed by the calculations. In addition, the pressure response of the non-hydrolysable GTP analogues GppNHp, GppCH2p, and GTPγS was examined within a pressure range up to 200 MPa. As observed earlier for 31P NMR chemical shifts of these nucleotides the pressure dependence of chemical shifts is clearly non-linear in most cases. In di- and tri-phospho nucleosides, the resonances of the two protons bound to the ribose 5′ carbon are non-equivalent and can be observed separately. The gg-rotamer at C4′- C5′ bond is strongly preferred and the downfield shifted resonance can be assigned to the H5″ proton in the nucleotides. In contrast, in adenosine itself the frequencies of the two resonances are interchanged.
[Display omitted]
•1H chemical shifts of purine 5′- ribonucleotides at pressures up to 200 MPa.•The pressure response of the 1H chemical shifts is non-linear.•The 5′ protons were stereospecifially assigned; errors in literature were corrected.•The conformational equilibria were studied experimentally.•Quantum-chemical calculation of AMP fit well to the experiments. |
doi_str_mv | 10.1016/j.bpc.2019.106261 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2290984571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0301462219303370</els_id><sourcerecordid>2290984571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c260t-f6c3da420cd2ea7ecd293c0c21e05f56e61d200dee43cbe945f412690a8656343</originalsourceid><addsrcrecordid>eNp9kEFLw0AQhRdRsFZ_gLc9ekmd3STbBE9SrBGqguh5SScTuyVN4k4i-O_dEs_O5THMvOHNJ8S1goUCZW73i22PCw0qD73RRp2ImcqWcZRogFMxgxhUlBitz8UF8x5CZQAzsS7c5072nphHTzJo37VMsqulKuTL85vEHR0clo3knasHPk760buWZDtiQ93gKuJLcVaXDdPVn87Fx_rhfVVEm9fHp9X9JkJtYIhqg3FVhkhYaSqXFCSPEVArgrRODRlVhbwVURLjlvIkrROlTQ5lZlITJ_Fc3Ex3e999jcSDPThGapqypW5kq3UOeZakSxVW1bSKvmP2VNveu0Ppf6wCe2Rm9zYws0dmdmIWPHeTh8IP3468ZXTUIlXOEw626tw_7l-PNnMv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2290984571</pqid></control><display><type>article</type><title>High pressure response of 1H NMR chemical shifts of purine nucleotides</title><source>Elsevier ScienceDirect Journals</source><creator>Munte, Claudia E. ; Karl, Matthias ; Kauter, Waldemar ; Eberlein, Lukas ; Pham, Thuy-Vy ; Erlach, Markus Beck ; Kast, Stefan M. ; Kremer, Werner ; Kalbitzer, Hans Robert</creator><creatorcontrib>Munte, Claudia E. ; Karl, Matthias ; Kauter, Waldemar ; Eberlein, Lukas ; Pham, Thuy-Vy ; Erlach, Markus Beck ; Kast, Stefan M. ; Kremer, Werner ; Kalbitzer, Hans Robert</creatorcontrib><description>The study of the pressure response by NMR spectroscopy provides information on the thermodynamics of conformational equilibria in proteins and nucleic acids. For obtaining a database for expected pressure effects on free nucleotides and nucleotides bound in macromolecular complexes, the pressure response of 1H chemical shifts and J-coupling constants of the purine 5′-ribonucleotides AMP, ADP, ATP, GMP, GDP, and GTP were studied in the absence and presence of Mg2+-ions. Experiments are supported by quantum-chemical calculations of populations and chemical shift differences in order to corroborate structural interpretations and to estimate missing data for AMP. The preference of the ribose S puckering obtained from the analysis of the experimental J-couplings is also confirmed by the calculations. In addition, the pressure response of the non-hydrolysable GTP analogues GppNHp, GppCH2p, and GTPγS was examined within a pressure range up to 200 MPa. As observed earlier for 31P NMR chemical shifts of these nucleotides the pressure dependence of chemical shifts is clearly non-linear in most cases. In di- and tri-phospho nucleosides, the resonances of the two protons bound to the ribose 5′ carbon are non-equivalent and can be observed separately. The gg-rotamer at C4′- C5′ bond is strongly preferred and the downfield shifted resonance can be assigned to the H5″ proton in the nucleotides. In contrast, in adenosine itself the frequencies of the two resonances are interchanged.
[Display omitted]
•1H chemical shifts of purine 5′- ribonucleotides at pressures up to 200 MPa.•The pressure response of the 1H chemical shifts is non-linear.•The 5′ protons were stereospecifially assigned; errors in literature were corrected.•The conformational equilibria were studied experimentally.•Quantum-chemical calculation of AMP fit well to the experiments.</description><identifier>ISSN: 0301-4622</identifier><identifier>EISSN: 1873-4200</identifier><identifier>DOI: 10.1016/j.bpc.2019.106261</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>1H NMR ; Adenine nucleotide ; AMP ; Guanine nucleotide ; High pressure NMR spectroscopy</subject><ispartof>Biophysical chemistry, 2019-11, Vol.254, p.106261-106261, Article 106261</ispartof><rights>2019 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c260t-f6c3da420cd2ea7ecd293c0c21e05f56e61d200dee43cbe945f412690a8656343</citedby><cites>FETCH-LOGICAL-c260t-f6c3da420cd2ea7ecd293c0c21e05f56e61d200dee43cbe945f412690a8656343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0301462219303370$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Munte, Claudia E.</creatorcontrib><creatorcontrib>Karl, Matthias</creatorcontrib><creatorcontrib>Kauter, Waldemar</creatorcontrib><creatorcontrib>Eberlein, Lukas</creatorcontrib><creatorcontrib>Pham, Thuy-Vy</creatorcontrib><creatorcontrib>Erlach, Markus Beck</creatorcontrib><creatorcontrib>Kast, Stefan M.</creatorcontrib><creatorcontrib>Kremer, Werner</creatorcontrib><creatorcontrib>Kalbitzer, Hans Robert</creatorcontrib><title>High pressure response of 1H NMR chemical shifts of purine nucleotides</title><title>Biophysical chemistry</title><description>The study of the pressure response by NMR spectroscopy provides information on the thermodynamics of conformational equilibria in proteins and nucleic acids. For obtaining a database for expected pressure effects on free nucleotides and nucleotides bound in macromolecular complexes, the pressure response of 1H chemical shifts and J-coupling constants of the purine 5′-ribonucleotides AMP, ADP, ATP, GMP, GDP, and GTP were studied in the absence and presence of Mg2+-ions. Experiments are supported by quantum-chemical calculations of populations and chemical shift differences in order to corroborate structural interpretations and to estimate missing data for AMP. The preference of the ribose S puckering obtained from the analysis of the experimental J-couplings is also confirmed by the calculations. In addition, the pressure response of the non-hydrolysable GTP analogues GppNHp, GppCH2p, and GTPγS was examined within a pressure range up to 200 MPa. As observed earlier for 31P NMR chemical shifts of these nucleotides the pressure dependence of chemical shifts is clearly non-linear in most cases. In di- and tri-phospho nucleosides, the resonances of the two protons bound to the ribose 5′ carbon are non-equivalent and can be observed separately. The gg-rotamer at C4′- C5′ bond is strongly preferred and the downfield shifted resonance can be assigned to the H5″ proton in the nucleotides. In contrast, in adenosine itself the frequencies of the two resonances are interchanged.
[Display omitted]
•1H chemical shifts of purine 5′- ribonucleotides at pressures up to 200 MPa.•The pressure response of the 1H chemical shifts is non-linear.•The 5′ protons were stereospecifially assigned; errors in literature were corrected.•The conformational equilibria were studied experimentally.•Quantum-chemical calculation of AMP fit well to the experiments.</description><subject>1H NMR</subject><subject>Adenine nucleotide</subject><subject>AMP</subject><subject>Guanine nucleotide</subject><subject>High pressure NMR spectroscopy</subject><issn>0301-4622</issn><issn>1873-4200</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLw0AQhRdRsFZ_gLc9ekmd3STbBE9SrBGqguh5SScTuyVN4k4i-O_dEs_O5THMvOHNJ8S1goUCZW73i22PCw0qD73RRp2ImcqWcZRogFMxgxhUlBitz8UF8x5CZQAzsS7c5072nphHTzJo37VMsqulKuTL85vEHR0clo3knasHPk760buWZDtiQ93gKuJLcVaXDdPVn87Fx_rhfVVEm9fHp9X9JkJtYIhqg3FVhkhYaSqXFCSPEVArgrRODRlVhbwVURLjlvIkrROlTQ5lZlITJ_Fc3Ex3e999jcSDPThGapqypW5kq3UOeZakSxVW1bSKvmP2VNveu0Ppf6wCe2Rm9zYws0dmdmIWPHeTh8IP3468ZXTUIlXOEw626tw_7l-PNnMv</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Munte, Claudia E.</creator><creator>Karl, Matthias</creator><creator>Kauter, Waldemar</creator><creator>Eberlein, Lukas</creator><creator>Pham, Thuy-Vy</creator><creator>Erlach, Markus Beck</creator><creator>Kast, Stefan M.</creator><creator>Kremer, Werner</creator><creator>Kalbitzer, Hans Robert</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201911</creationdate><title>High pressure response of 1H NMR chemical shifts of purine nucleotides</title><author>Munte, Claudia E. ; Karl, Matthias ; Kauter, Waldemar ; Eberlein, Lukas ; Pham, Thuy-Vy ; Erlach, Markus Beck ; Kast, Stefan M. ; Kremer, Werner ; Kalbitzer, Hans Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c260t-f6c3da420cd2ea7ecd293c0c21e05f56e61d200dee43cbe945f412690a8656343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>1H NMR</topic><topic>Adenine nucleotide</topic><topic>AMP</topic><topic>Guanine nucleotide</topic><topic>High pressure NMR spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Munte, Claudia E.</creatorcontrib><creatorcontrib>Karl, Matthias</creatorcontrib><creatorcontrib>Kauter, Waldemar</creatorcontrib><creatorcontrib>Eberlein, Lukas</creatorcontrib><creatorcontrib>Pham, Thuy-Vy</creatorcontrib><creatorcontrib>Erlach, Markus Beck</creatorcontrib><creatorcontrib>Kast, Stefan M.</creatorcontrib><creatorcontrib>Kremer, Werner</creatorcontrib><creatorcontrib>Kalbitzer, Hans Robert</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biophysical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Munte, Claudia E.</au><au>Karl, Matthias</au><au>Kauter, Waldemar</au><au>Eberlein, Lukas</au><au>Pham, Thuy-Vy</au><au>Erlach, Markus Beck</au><au>Kast, Stefan M.</au><au>Kremer, Werner</au><au>Kalbitzer, Hans Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High pressure response of 1H NMR chemical shifts of purine nucleotides</atitle><jtitle>Biophysical chemistry</jtitle><date>2019-11</date><risdate>2019</risdate><volume>254</volume><spage>106261</spage><epage>106261</epage><pages>106261-106261</pages><artnum>106261</artnum><issn>0301-4622</issn><eissn>1873-4200</eissn><abstract>The study of the pressure response by NMR spectroscopy provides information on the thermodynamics of conformational equilibria in proteins and nucleic acids. For obtaining a database for expected pressure effects on free nucleotides and nucleotides bound in macromolecular complexes, the pressure response of 1H chemical shifts and J-coupling constants of the purine 5′-ribonucleotides AMP, ADP, ATP, GMP, GDP, and GTP were studied in the absence and presence of Mg2+-ions. Experiments are supported by quantum-chemical calculations of populations and chemical shift differences in order to corroborate structural interpretations and to estimate missing data for AMP. The preference of the ribose S puckering obtained from the analysis of the experimental J-couplings is also confirmed by the calculations. In addition, the pressure response of the non-hydrolysable GTP analogues GppNHp, GppCH2p, and GTPγS was examined within a pressure range up to 200 MPa. As observed earlier for 31P NMR chemical shifts of these nucleotides the pressure dependence of chemical shifts is clearly non-linear in most cases. In di- and tri-phospho nucleosides, the resonances of the two protons bound to the ribose 5′ carbon are non-equivalent and can be observed separately. The gg-rotamer at C4′- C5′ bond is strongly preferred and the downfield shifted resonance can be assigned to the H5″ proton in the nucleotides. In contrast, in adenosine itself the frequencies of the two resonances are interchanged.
[Display omitted]
•1H chemical shifts of purine 5′- ribonucleotides at pressures up to 200 MPa.•The pressure response of the 1H chemical shifts is non-linear.•The 5′ protons were stereospecifially assigned; errors in literature were corrected.•The conformational equilibria were studied experimentally.•Quantum-chemical calculation of AMP fit well to the experiments.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.bpc.2019.106261</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0301-4622 |
ispartof | Biophysical chemistry, 2019-11, Vol.254, p.106261-106261, Article 106261 |
issn | 0301-4622 1873-4200 |
language | eng |
recordid | cdi_proquest_miscellaneous_2290984571 |
source | Elsevier ScienceDirect Journals |
subjects | 1H NMR Adenine nucleotide AMP Guanine nucleotide High pressure NMR spectroscopy |
title | High pressure response of 1H NMR chemical shifts of purine nucleotides |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T09%3A48%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20pressure%20response%20of%201H%20NMR%20chemical%20shifts%20of%20purine%20nucleotides&rft.jtitle=Biophysical%20chemistry&rft.au=Munte,%20Claudia%20E.&rft.date=2019-11&rft.volume=254&rft.spage=106261&rft.epage=106261&rft.pages=106261-106261&rft.artnum=106261&rft.issn=0301-4622&rft.eissn=1873-4200&rft_id=info:doi/10.1016/j.bpc.2019.106261&rft_dat=%3Cproquest_cross%3E2290984571%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2290984571&rft_id=info:pmid/&rft_els_id=S0301462219303370&rfr_iscdi=true |