Automated vertebrae localization and identification by decision forests and image-based refinement on real-world CT data

Purpose Development of a fully automatic algorithm for the automatic localization and identification of vertebral bodies in computed tomography (CT). Materials and methods This algorithm was developed using a dataset based on real-world data of 232 thoraco-abdominopelvic CT scans retrospectively col...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radiologia medica 2020-01, Vol.125 (1), p.48-56
Hauptverfasser: Jimenez-Pastor, Ana, Alberich-Bayarri, Angel, Fos-Guarinos, Belen, Garcia-Castro, Fabio, Garcia-Juan, David, Glocker, Ben, Marti-Bonmati, Luis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 56
container_issue 1
container_start_page 48
container_title Radiologia medica
container_volume 125
creator Jimenez-Pastor, Ana
Alberich-Bayarri, Angel
Fos-Guarinos, Belen
Garcia-Castro, Fabio
Garcia-Juan, David
Glocker, Ben
Marti-Bonmati, Luis
description Purpose Development of a fully automatic algorithm for the automatic localization and identification of vertebral bodies in computed tomography (CT). Materials and methods This algorithm was developed using a dataset based on real-world data of 232 thoraco-abdominopelvic CT scans retrospectively collected. In order to achieve an accurate solution, a two-stage automated method was developed: decision forests for a rough prediction of vertebral bodies position, and morphological image processing techniques to refine the previous detection by locating the position of the spinal canal. Results The mean distance error between the predicted vertebrae centroid position and truth was 13.7 mm. The identification rate was 79.6% on the thoracic region and of 74.8% on the lumbar segment. Conclusion The algorithm provides a new method to detect and identify vertebral bodies from arbitrary field-of-view body CT scans.
doi_str_mv 10.1007/s11547-019-01079-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2290984551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2332363682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-1539fb4f5f2d7e80daff2ec6591f02dd6b9a50363f79413ed693b3fa5990ca1e3</originalsourceid><addsrcrecordid>eNp9kUtLxDAUhYMozjj6B1xIwY2baB5N2yyHwRcMuBnXIW1uhkrbaNKq4683Y0cFFy5Cws13zr2Xg9ApJZeUkPwqUCrSHBMq4yG5xHIPTWnBMpzJgu-jKSGc44JnbIKOQngiJI2cPEQTTgVjPBVT9D4fetfqHkzyCr6H0mtIGlfppv7Qfe26RHcmqQ10fW3raiyVm8RAVYft2zoPoQ8j1uo14FKH6ObB1h20UZdEyoNu8JvzjUkWq8ToXh-jA6ubACe7e4Yeb65Xizu8fLi9X8yXuEpT2mMquLRlaoVlJoeCGG0tgyoTklrCjMlKqQXhGbe5TCkHk0lecquFlKTSFPgMXYy-z969DHFU1dahgqbRHbghKMYkkUUqBI3o-R_0yQ2-i9MpxjmLTbKCRYqNVOVdCHFN9ezj4n6jKFHbXNSYi4q5qK9clIyis531ULZgfiTfQUSAj0CIX90a_G_vf2w_AfX1mbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2332363682</pqid></control><display><type>article</type><title>Automated vertebrae localization and identification by decision forests and image-based refinement on real-world CT data</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Jimenez-Pastor, Ana ; Alberich-Bayarri, Angel ; Fos-Guarinos, Belen ; Garcia-Castro, Fabio ; Garcia-Juan, David ; Glocker, Ben ; Marti-Bonmati, Luis</creator><creatorcontrib>Jimenez-Pastor, Ana ; Alberich-Bayarri, Angel ; Fos-Guarinos, Belen ; Garcia-Castro, Fabio ; Garcia-Juan, David ; Glocker, Ben ; Marti-Bonmati, Luis</creatorcontrib><description>Purpose Development of a fully automatic algorithm for the automatic localization and identification of vertebral bodies in computed tomography (CT). Materials and methods This algorithm was developed using a dataset based on real-world data of 232 thoraco-abdominopelvic CT scans retrospectively collected. In order to achieve an accurate solution, a two-stage automated method was developed: decision forests for a rough prediction of vertebral bodies position, and morphological image processing techniques to refine the previous detection by locating the position of the spinal canal. Results The mean distance error between the predicted vertebrae centroid position and truth was 13.7 mm. The identification rate was 79.6% on the thoracic region and of 74.8% on the lumbar segment. Conclusion The algorithm provides a new method to detect and identify vertebral bodies from arbitrary field-of-view body CT scans.</description><identifier>ISSN: 0033-8362</identifier><identifier>EISSN: 1826-6983</identifier><identifier>DOI: 10.1007/s11547-019-01079-9</identifier><identifier>PMID: 31522345</identifier><language>eng</language><publisher>Milan: Springer Milan</publisher><subject>Adult ; Aged ; Aged, 80 and over ; Algorithms ; Anatomic Landmarks - diagnostic imaging ; Automation ; Centroids ; Computed tomography ; Computer Application ; Datasets as Topic ; Decision Trees ; Diagnostic Radiology ; Field of view ; Forest management ; Humans ; Identification methods ; Image detection ; Image processing ; Imaging ; Interventional Radiology ; Localization ; Machine Learning ; Medical imaging ; Medicine ; Medicine &amp; Public Health ; Middle Aged ; Multidetector Computed Tomography - methods ; Neuroradiology ; Predictions ; Radiology ; Retrospective Studies ; Spine - diagnostic imaging ; Ultrasound ; Vertebrae ; Young Adult</subject><ispartof>Radiologia medica, 2020-01, Vol.125 (1), p.48-56</ispartof><rights>Italian Society of Medical Radiology 2019</rights><rights>Copyright Springer Nature B.V. 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-1539fb4f5f2d7e80daff2ec6591f02dd6b9a50363f79413ed693b3fa5990ca1e3</citedby><cites>FETCH-LOGICAL-c441t-1539fb4f5f2d7e80daff2ec6591f02dd6b9a50363f79413ed693b3fa5990ca1e3</cites><orcidid>0000-0002-0978-9429</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11547-019-01079-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11547-019-01079-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31522345$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jimenez-Pastor, Ana</creatorcontrib><creatorcontrib>Alberich-Bayarri, Angel</creatorcontrib><creatorcontrib>Fos-Guarinos, Belen</creatorcontrib><creatorcontrib>Garcia-Castro, Fabio</creatorcontrib><creatorcontrib>Garcia-Juan, David</creatorcontrib><creatorcontrib>Glocker, Ben</creatorcontrib><creatorcontrib>Marti-Bonmati, Luis</creatorcontrib><title>Automated vertebrae localization and identification by decision forests and image-based refinement on real-world CT data</title><title>Radiologia medica</title><addtitle>Radiol med</addtitle><addtitle>Radiol Med</addtitle><description>Purpose Development of a fully automatic algorithm for the automatic localization and identification of vertebral bodies in computed tomography (CT). Materials and methods This algorithm was developed using a dataset based on real-world data of 232 thoraco-abdominopelvic CT scans retrospectively collected. In order to achieve an accurate solution, a two-stage automated method was developed: decision forests for a rough prediction of vertebral bodies position, and morphological image processing techniques to refine the previous detection by locating the position of the spinal canal. Results The mean distance error between the predicted vertebrae centroid position and truth was 13.7 mm. The identification rate was 79.6% on the thoracic region and of 74.8% on the lumbar segment. Conclusion The algorithm provides a new method to detect and identify vertebral bodies from arbitrary field-of-view body CT scans.</description><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Algorithms</subject><subject>Anatomic Landmarks - diagnostic imaging</subject><subject>Automation</subject><subject>Centroids</subject><subject>Computed tomography</subject><subject>Computer Application</subject><subject>Datasets as Topic</subject><subject>Decision Trees</subject><subject>Diagnostic Radiology</subject><subject>Field of view</subject><subject>Forest management</subject><subject>Humans</subject><subject>Identification methods</subject><subject>Image detection</subject><subject>Image processing</subject><subject>Imaging</subject><subject>Interventional Radiology</subject><subject>Localization</subject><subject>Machine Learning</subject><subject>Medical imaging</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Middle Aged</subject><subject>Multidetector Computed Tomography - methods</subject><subject>Neuroradiology</subject><subject>Predictions</subject><subject>Radiology</subject><subject>Retrospective Studies</subject><subject>Spine - diagnostic imaging</subject><subject>Ultrasound</subject><subject>Vertebrae</subject><subject>Young Adult</subject><issn>0033-8362</issn><issn>1826-6983</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUtLxDAUhYMozjj6B1xIwY2baB5N2yyHwRcMuBnXIW1uhkrbaNKq4683Y0cFFy5Cws13zr2Xg9ApJZeUkPwqUCrSHBMq4yG5xHIPTWnBMpzJgu-jKSGc44JnbIKOQngiJI2cPEQTTgVjPBVT9D4fetfqHkzyCr6H0mtIGlfppv7Qfe26RHcmqQ10fW3raiyVm8RAVYft2zoPoQ8j1uo14FKH6ObB1h20UZdEyoNu8JvzjUkWq8ToXh-jA6ubACe7e4Yeb65Xizu8fLi9X8yXuEpT2mMquLRlaoVlJoeCGG0tgyoTklrCjMlKqQXhGbe5TCkHk0lecquFlKTSFPgMXYy-z969DHFU1dahgqbRHbghKMYkkUUqBI3o-R_0yQ2-i9MpxjmLTbKCRYqNVOVdCHFN9ezj4n6jKFHbXNSYi4q5qK9clIyis531ULZgfiTfQUSAj0CIX90a_G_vf2w_AfX1mbg</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Jimenez-Pastor, Ana</creator><creator>Alberich-Bayarri, Angel</creator><creator>Fos-Guarinos, Belen</creator><creator>Garcia-Castro, Fabio</creator><creator>Garcia-Juan, David</creator><creator>Glocker, Ben</creator><creator>Marti-Bonmati, Luis</creator><general>Springer Milan</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0978-9429</orcidid></search><sort><creationdate>20200101</creationdate><title>Automated vertebrae localization and identification by decision forests and image-based refinement on real-world CT data</title><author>Jimenez-Pastor, Ana ; Alberich-Bayarri, Angel ; Fos-Guarinos, Belen ; Garcia-Castro, Fabio ; Garcia-Juan, David ; Glocker, Ben ; Marti-Bonmati, Luis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-1539fb4f5f2d7e80daff2ec6591f02dd6b9a50363f79413ed693b3fa5990ca1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Algorithms</topic><topic>Anatomic Landmarks - diagnostic imaging</topic><topic>Automation</topic><topic>Centroids</topic><topic>Computed tomography</topic><topic>Computer Application</topic><topic>Datasets as Topic</topic><topic>Decision Trees</topic><topic>Diagnostic Radiology</topic><topic>Field of view</topic><topic>Forest management</topic><topic>Humans</topic><topic>Identification methods</topic><topic>Image detection</topic><topic>Image processing</topic><topic>Imaging</topic><topic>Interventional Radiology</topic><topic>Localization</topic><topic>Machine Learning</topic><topic>Medical imaging</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Middle Aged</topic><topic>Multidetector Computed Tomography - methods</topic><topic>Neuroradiology</topic><topic>Predictions</topic><topic>Radiology</topic><topic>Retrospective Studies</topic><topic>Spine - diagnostic imaging</topic><topic>Ultrasound</topic><topic>Vertebrae</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jimenez-Pastor, Ana</creatorcontrib><creatorcontrib>Alberich-Bayarri, Angel</creatorcontrib><creatorcontrib>Fos-Guarinos, Belen</creatorcontrib><creatorcontrib>Garcia-Castro, Fabio</creatorcontrib><creatorcontrib>Garcia-Juan, David</creatorcontrib><creatorcontrib>Glocker, Ben</creatorcontrib><creatorcontrib>Marti-Bonmati, Luis</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Radiologia medica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jimenez-Pastor, Ana</au><au>Alberich-Bayarri, Angel</au><au>Fos-Guarinos, Belen</au><au>Garcia-Castro, Fabio</au><au>Garcia-Juan, David</au><au>Glocker, Ben</au><au>Marti-Bonmati, Luis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated vertebrae localization and identification by decision forests and image-based refinement on real-world CT data</atitle><jtitle>Radiologia medica</jtitle><stitle>Radiol med</stitle><addtitle>Radiol Med</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>125</volume><issue>1</issue><spage>48</spage><epage>56</epage><pages>48-56</pages><issn>0033-8362</issn><eissn>1826-6983</eissn><abstract>Purpose Development of a fully automatic algorithm for the automatic localization and identification of vertebral bodies in computed tomography (CT). Materials and methods This algorithm was developed using a dataset based on real-world data of 232 thoraco-abdominopelvic CT scans retrospectively collected. In order to achieve an accurate solution, a two-stage automated method was developed: decision forests for a rough prediction of vertebral bodies position, and morphological image processing techniques to refine the previous detection by locating the position of the spinal canal. Results The mean distance error between the predicted vertebrae centroid position and truth was 13.7 mm. The identification rate was 79.6% on the thoracic region and of 74.8% on the lumbar segment. Conclusion The algorithm provides a new method to detect and identify vertebral bodies from arbitrary field-of-view body CT scans.</abstract><cop>Milan</cop><pub>Springer Milan</pub><pmid>31522345</pmid><doi>10.1007/s11547-019-01079-9</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0978-9429</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0033-8362
ispartof Radiologia medica, 2020-01, Vol.125 (1), p.48-56
issn 0033-8362
1826-6983
language eng
recordid cdi_proquest_miscellaneous_2290984551
source MEDLINE; SpringerLink Journals
subjects Adult
Aged
Aged, 80 and over
Algorithms
Anatomic Landmarks - diagnostic imaging
Automation
Centroids
Computed tomography
Computer Application
Datasets as Topic
Decision Trees
Diagnostic Radiology
Field of view
Forest management
Humans
Identification methods
Image detection
Image processing
Imaging
Interventional Radiology
Localization
Machine Learning
Medical imaging
Medicine
Medicine & Public Health
Middle Aged
Multidetector Computed Tomography - methods
Neuroradiology
Predictions
Radiology
Retrospective Studies
Spine - diagnostic imaging
Ultrasound
Vertebrae
Young Adult
title Automated vertebrae localization and identification by decision forests and image-based refinement on real-world CT data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T11%3A23%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20vertebrae%20localization%20and%20identification%20by%20decision%20forests%20and%20image-based%20refinement%20on%20real-world%20CT%20data&rft.jtitle=Radiologia%20medica&rft.au=Jimenez-Pastor,%20Ana&rft.date=2020-01-01&rft.volume=125&rft.issue=1&rft.spage=48&rft.epage=56&rft.pages=48-56&rft.issn=0033-8362&rft.eissn=1826-6983&rft_id=info:doi/10.1007/s11547-019-01079-9&rft_dat=%3Cproquest_cross%3E2332363682%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2332363682&rft_id=info:pmid/31522345&rfr_iscdi=true