Multidimensional Integrated Chalcogenides Nanoarchitecture Achieves Highly Stable and Ultrafast Potassium‐Ion Storage

Potassium‐ion batteries (KIBs) have come into the spotlight in large‐scale energy storage systems because of cost‐effective and abundant potassium resources. However, the poor rate performance and problematic cycle life of existing electrode materials are the main bottlenecks to future potential app...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2019-10, Vol.15 (44), p.e1903720-n/a
Hauptverfasser: Yang, Chao, Feng, Jianrui, Zhang, Yelong, Yang, Qifeng, Li, Peihao, Arlt, Tobias, Lai, Feili, Wang, Junjie, Yin, Chaochuang, Wang, Wei, Qian, Guoyu, Cui, Lifeng, Yang, Wenjuan, Chen, Yanan, Manke, Ingo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 44
container_start_page e1903720
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 15
creator Yang, Chao
Feng, Jianrui
Zhang, Yelong
Yang, Qifeng
Li, Peihao
Arlt, Tobias
Lai, Feili
Wang, Junjie
Yin, Chaochuang
Wang, Wei
Qian, Guoyu
Cui, Lifeng
Yang, Wenjuan
Chen, Yanan
Manke, Ingo
description Potassium‐ion batteries (KIBs) have come into the spotlight in large‐scale energy storage systems because of cost‐effective and abundant potassium resources. However, the poor rate performance and problematic cycle life of existing electrode materials are the main bottlenecks to future potential applications. Here, the first example of preparing 3D hierarchical nanoboxes multidimensionally assembled from interlayer‐expanded nano‐2D MoS2@dot‐like Co9S8 embedded into a nitrogen and sulfur codoped porous carbon matrix (Co9S8/NSC@MoS2@NSC) for greatly boosting the electrochemical properties of KIBs in terms of reversible capacity, rate capability, and cycling lifespan, is reported. Benefiting from the synergistic effects, Co9S8/NSC@MoS2@NSC manifest a very high reversible capacity of 403 mAh g−1 at 100 mA g−1 after 100 cycles, an unprecedented rate capability of 141 mAh g−1 at 3000 mA g−1 over 800 cycles, and a negligible capacity decay of 0.02% cycle−1, boosting promising applications in high‐performance KIBs. Density functional theory calculations demonstrate that Co9S8/NSC@MoS2@NSC nanoboxes have large adsorption energy and low diffusion barriers during K‐ion storage reactions, implying fast K‐ion diffusion capability. This work may enlighten the design and construction of advanced electrode materials combined with strong chemical bonding and integrated functional advantages for future large‐scale stationary energy storage. The first example of preparing 3D hierarchical nanoboxes multidimensionally assembled from interlayer‐expanded nano‐2D MoS2@dot‐like Co9S8 embedded into a nitrogen and sulfur codoped porous carbon matrix (Co9S8/NSC@MoS2@NSC) for greatly boosting the electrochemical properties of potassium‐ion batteries in terms of reversible capacity, rate capability, and cycling stability, is reported.
doi_str_mv 10.1002/smll.201903720
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2290865332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2309649041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4120-dbece479e404d5d5db4a03c871e3ea189b4b0e0a5fc218e6848f1009618be2973</originalsourceid><addsrcrecordid>eNqFkT1vFDEQhi0EIiHQUqKVaGjuGH_sh8voFMhJF0AKqVez3tk7R951sL1E1_ET-I38EhxdOCQaNMWMNM88xbyMveaw5ADifRydWwrgGmQt4Ak75RWXi6oR-ulx5nDCXsR4CyC5UPVzdiJ5yUut5Cm7v5pdsr0daYrWT-iK9ZRoGzBRX6x26Izf0mR7isUnnDwGs7OJTJoDFed5pu95c2m3O7cvrhN2jgqc-uLGpYADxlR88QljtPP468fPtZ8y5ANu6SV7NqCL9Oqxn7GbDxdfV5eLzeeP69X5ZmEUF7DoOzKkak0KVF_m6hSCNE3NSRLyRneqAwIsByN4Q1WjmiH_RVe86UjoWp6xdwfvXfDfZoqpHW005BxO5OfYCqGhqUopRUbf_oPe-jnkl2RKZqXSoHimlgfKBB9joKG9C3bEsG85tA-RtA-RtMdI8sGbR-3cjdQf8T8ZZEAfgHvraP8fXXt9tdn8lf8G70ia3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2309649041</pqid></control><display><type>article</type><title>Multidimensional Integrated Chalcogenides Nanoarchitecture Achieves Highly Stable and Ultrafast Potassium‐Ion Storage</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yang, Chao ; Feng, Jianrui ; Zhang, Yelong ; Yang, Qifeng ; Li, Peihao ; Arlt, Tobias ; Lai, Feili ; Wang, Junjie ; Yin, Chaochuang ; Wang, Wei ; Qian, Guoyu ; Cui, Lifeng ; Yang, Wenjuan ; Chen, Yanan ; Manke, Ingo</creator><creatorcontrib>Yang, Chao ; Feng, Jianrui ; Zhang, Yelong ; Yang, Qifeng ; Li, Peihao ; Arlt, Tobias ; Lai, Feili ; Wang, Junjie ; Yin, Chaochuang ; Wang, Wei ; Qian, Guoyu ; Cui, Lifeng ; Yang, Wenjuan ; Chen, Yanan ; Manke, Ingo</creatorcontrib><description>Potassium‐ion batteries (KIBs) have come into the spotlight in large‐scale energy storage systems because of cost‐effective and abundant potassium resources. However, the poor rate performance and problematic cycle life of existing electrode materials are the main bottlenecks to future potential applications. Here, the first example of preparing 3D hierarchical nanoboxes multidimensionally assembled from interlayer‐expanded nano‐2D MoS2@dot‐like Co9S8 embedded into a nitrogen and sulfur codoped porous carbon matrix (Co9S8/NSC@MoS2@NSC) for greatly boosting the electrochemical properties of KIBs in terms of reversible capacity, rate capability, and cycling lifespan, is reported. Benefiting from the synergistic effects, Co9S8/NSC@MoS2@NSC manifest a very high reversible capacity of 403 mAh g−1 at 100 mA g−1 after 100 cycles, an unprecedented rate capability of 141 mAh g−1 at 3000 mA g−1 over 800 cycles, and a negligible capacity decay of 0.02% cycle−1, boosting promising applications in high‐performance KIBs. Density functional theory calculations demonstrate that Co9S8/NSC@MoS2@NSC nanoboxes have large adsorption energy and low diffusion barriers during K‐ion storage reactions, implying fast K‐ion diffusion capability. This work may enlighten the design and construction of advanced electrode materials combined with strong chemical bonding and integrated functional advantages for future large‐scale stationary energy storage. The first example of preparing 3D hierarchical nanoboxes multidimensionally assembled from interlayer‐expanded nano‐2D MoS2@dot‐like Co9S8 embedded into a nitrogen and sulfur codoped porous carbon matrix (Co9S8/NSC@MoS2@NSC) for greatly boosting the electrochemical properties of potassium‐ion batteries in terms of reversible capacity, rate capability, and cycling stability, is reported.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201903720</identifier><identifier>PMID: 31515943</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>anode materials ; Bonding strength ; Chemical bonds ; Cobalt sulfide ; Density functional theory ; Diffusion barriers ; Diffusion rate ; Electrochemical analysis ; electrochemical property ; Electrode materials ; Electrodes ; Energy storage ; high capacity ; Interlayers ; Ion diffusion ; Ion storage ; metal sulfides ; Molybdenum disulfide ; Nanotechnology ; Organic chemistry ; Porous media ; Potassium ; potassium‐ion batteries ; Rechargeable batteries ; Storage batteries ; Storage systems ; System effectiveness</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2019-10, Vol.15 (44), p.e1903720-n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4120-dbece479e404d5d5db4a03c871e3ea189b4b0e0a5fc218e6848f1009618be2973</citedby><cites>FETCH-LOGICAL-c4120-dbece479e404d5d5db4a03c871e3ea189b4b0e0a5fc218e6848f1009618be2973</cites><orcidid>0000-0002-3219-5848</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.201903720$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.201903720$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31515943$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Chao</creatorcontrib><creatorcontrib>Feng, Jianrui</creatorcontrib><creatorcontrib>Zhang, Yelong</creatorcontrib><creatorcontrib>Yang, Qifeng</creatorcontrib><creatorcontrib>Li, Peihao</creatorcontrib><creatorcontrib>Arlt, Tobias</creatorcontrib><creatorcontrib>Lai, Feili</creatorcontrib><creatorcontrib>Wang, Junjie</creatorcontrib><creatorcontrib>Yin, Chaochuang</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Qian, Guoyu</creatorcontrib><creatorcontrib>Cui, Lifeng</creatorcontrib><creatorcontrib>Yang, Wenjuan</creatorcontrib><creatorcontrib>Chen, Yanan</creatorcontrib><creatorcontrib>Manke, Ingo</creatorcontrib><title>Multidimensional Integrated Chalcogenides Nanoarchitecture Achieves Highly Stable and Ultrafast Potassium‐Ion Storage</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Potassium‐ion batteries (KIBs) have come into the spotlight in large‐scale energy storage systems because of cost‐effective and abundant potassium resources. However, the poor rate performance and problematic cycle life of existing electrode materials are the main bottlenecks to future potential applications. Here, the first example of preparing 3D hierarchical nanoboxes multidimensionally assembled from interlayer‐expanded nano‐2D MoS2@dot‐like Co9S8 embedded into a nitrogen and sulfur codoped porous carbon matrix (Co9S8/NSC@MoS2@NSC) for greatly boosting the electrochemical properties of KIBs in terms of reversible capacity, rate capability, and cycling lifespan, is reported. Benefiting from the synergistic effects, Co9S8/NSC@MoS2@NSC manifest a very high reversible capacity of 403 mAh g−1 at 100 mA g−1 after 100 cycles, an unprecedented rate capability of 141 mAh g−1 at 3000 mA g−1 over 800 cycles, and a negligible capacity decay of 0.02% cycle−1, boosting promising applications in high‐performance KIBs. Density functional theory calculations demonstrate that Co9S8/NSC@MoS2@NSC nanoboxes have large adsorption energy and low diffusion barriers during K‐ion storage reactions, implying fast K‐ion diffusion capability. This work may enlighten the design and construction of advanced electrode materials combined with strong chemical bonding and integrated functional advantages for future large‐scale stationary energy storage. The first example of preparing 3D hierarchical nanoboxes multidimensionally assembled from interlayer‐expanded nano‐2D MoS2@dot‐like Co9S8 embedded into a nitrogen and sulfur codoped porous carbon matrix (Co9S8/NSC@MoS2@NSC) for greatly boosting the electrochemical properties of potassium‐ion batteries in terms of reversible capacity, rate capability, and cycling stability, is reported.</description><subject>anode materials</subject><subject>Bonding strength</subject><subject>Chemical bonds</subject><subject>Cobalt sulfide</subject><subject>Density functional theory</subject><subject>Diffusion barriers</subject><subject>Diffusion rate</subject><subject>Electrochemical analysis</subject><subject>electrochemical property</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Energy storage</subject><subject>high capacity</subject><subject>Interlayers</subject><subject>Ion diffusion</subject><subject>Ion storage</subject><subject>metal sulfides</subject><subject>Molybdenum disulfide</subject><subject>Nanotechnology</subject><subject>Organic chemistry</subject><subject>Porous media</subject><subject>Potassium</subject><subject>potassium‐ion batteries</subject><subject>Rechargeable batteries</subject><subject>Storage batteries</subject><subject>Storage systems</subject><subject>System effectiveness</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkT1vFDEQhi0EIiHQUqKVaGjuGH_sh8voFMhJF0AKqVez3tk7R951sL1E1_ET-I38EhxdOCQaNMWMNM88xbyMveaw5ADifRydWwrgGmQt4Ak75RWXi6oR-ulx5nDCXsR4CyC5UPVzdiJ5yUut5Cm7v5pdsr0daYrWT-iK9ZRoGzBRX6x26Izf0mR7isUnnDwGs7OJTJoDFed5pu95c2m3O7cvrhN2jgqc-uLGpYADxlR88QljtPP468fPtZ8y5ANu6SV7NqCL9Oqxn7GbDxdfV5eLzeeP69X5ZmEUF7DoOzKkak0KVF_m6hSCNE3NSRLyRneqAwIsByN4Q1WjmiH_RVe86UjoWp6xdwfvXfDfZoqpHW005BxO5OfYCqGhqUopRUbf_oPe-jnkl2RKZqXSoHimlgfKBB9joKG9C3bEsG85tA-RtA-RtMdI8sGbR-3cjdQf8T8ZZEAfgHvraP8fXXt9tdn8lf8G70ia3Q</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Yang, Chao</creator><creator>Feng, Jianrui</creator><creator>Zhang, Yelong</creator><creator>Yang, Qifeng</creator><creator>Li, Peihao</creator><creator>Arlt, Tobias</creator><creator>Lai, Feili</creator><creator>Wang, Junjie</creator><creator>Yin, Chaochuang</creator><creator>Wang, Wei</creator><creator>Qian, Guoyu</creator><creator>Cui, Lifeng</creator><creator>Yang, Wenjuan</creator><creator>Chen, Yanan</creator><creator>Manke, Ingo</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3219-5848</orcidid></search><sort><creationdate>20191001</creationdate><title>Multidimensional Integrated Chalcogenides Nanoarchitecture Achieves Highly Stable and Ultrafast Potassium‐Ion Storage</title><author>Yang, Chao ; Feng, Jianrui ; Zhang, Yelong ; Yang, Qifeng ; Li, Peihao ; Arlt, Tobias ; Lai, Feili ; Wang, Junjie ; Yin, Chaochuang ; Wang, Wei ; Qian, Guoyu ; Cui, Lifeng ; Yang, Wenjuan ; Chen, Yanan ; Manke, Ingo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4120-dbece479e404d5d5db4a03c871e3ea189b4b0e0a5fc218e6848f1009618be2973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>anode materials</topic><topic>Bonding strength</topic><topic>Chemical bonds</topic><topic>Cobalt sulfide</topic><topic>Density functional theory</topic><topic>Diffusion barriers</topic><topic>Diffusion rate</topic><topic>Electrochemical analysis</topic><topic>electrochemical property</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Energy storage</topic><topic>high capacity</topic><topic>Interlayers</topic><topic>Ion diffusion</topic><topic>Ion storage</topic><topic>metal sulfides</topic><topic>Molybdenum disulfide</topic><topic>Nanotechnology</topic><topic>Organic chemistry</topic><topic>Porous media</topic><topic>Potassium</topic><topic>potassium‐ion batteries</topic><topic>Rechargeable batteries</topic><topic>Storage batteries</topic><topic>Storage systems</topic><topic>System effectiveness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Chao</creatorcontrib><creatorcontrib>Feng, Jianrui</creatorcontrib><creatorcontrib>Zhang, Yelong</creatorcontrib><creatorcontrib>Yang, Qifeng</creatorcontrib><creatorcontrib>Li, Peihao</creatorcontrib><creatorcontrib>Arlt, Tobias</creatorcontrib><creatorcontrib>Lai, Feili</creatorcontrib><creatorcontrib>Wang, Junjie</creatorcontrib><creatorcontrib>Yin, Chaochuang</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Qian, Guoyu</creatorcontrib><creatorcontrib>Cui, Lifeng</creatorcontrib><creatorcontrib>Yang, Wenjuan</creatorcontrib><creatorcontrib>Chen, Yanan</creatorcontrib><creatorcontrib>Manke, Ingo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Chao</au><au>Feng, Jianrui</au><au>Zhang, Yelong</au><au>Yang, Qifeng</au><au>Li, Peihao</au><au>Arlt, Tobias</au><au>Lai, Feili</au><au>Wang, Junjie</au><au>Yin, Chaochuang</au><au>Wang, Wei</au><au>Qian, Guoyu</au><au>Cui, Lifeng</au><au>Yang, Wenjuan</au><au>Chen, Yanan</au><au>Manke, Ingo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multidimensional Integrated Chalcogenides Nanoarchitecture Achieves Highly Stable and Ultrafast Potassium‐Ion Storage</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2019-10-01</date><risdate>2019</risdate><volume>15</volume><issue>44</issue><spage>e1903720</spage><epage>n/a</epage><pages>e1903720-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Potassium‐ion batteries (KIBs) have come into the spotlight in large‐scale energy storage systems because of cost‐effective and abundant potassium resources. However, the poor rate performance and problematic cycle life of existing electrode materials are the main bottlenecks to future potential applications. Here, the first example of preparing 3D hierarchical nanoboxes multidimensionally assembled from interlayer‐expanded nano‐2D MoS2@dot‐like Co9S8 embedded into a nitrogen and sulfur codoped porous carbon matrix (Co9S8/NSC@MoS2@NSC) for greatly boosting the electrochemical properties of KIBs in terms of reversible capacity, rate capability, and cycling lifespan, is reported. Benefiting from the synergistic effects, Co9S8/NSC@MoS2@NSC manifest a very high reversible capacity of 403 mAh g−1 at 100 mA g−1 after 100 cycles, an unprecedented rate capability of 141 mAh g−1 at 3000 mA g−1 over 800 cycles, and a negligible capacity decay of 0.02% cycle−1, boosting promising applications in high‐performance KIBs. Density functional theory calculations demonstrate that Co9S8/NSC@MoS2@NSC nanoboxes have large adsorption energy and low diffusion barriers during K‐ion storage reactions, implying fast K‐ion diffusion capability. This work may enlighten the design and construction of advanced electrode materials combined with strong chemical bonding and integrated functional advantages for future large‐scale stationary energy storage. The first example of preparing 3D hierarchical nanoboxes multidimensionally assembled from interlayer‐expanded nano‐2D MoS2@dot‐like Co9S8 embedded into a nitrogen and sulfur codoped porous carbon matrix (Co9S8/NSC@MoS2@NSC) for greatly boosting the electrochemical properties of potassium‐ion batteries in terms of reversible capacity, rate capability, and cycling stability, is reported.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31515943</pmid><doi>10.1002/smll.201903720</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3219-5848</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2019-10, Vol.15 (44), p.e1903720-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2290865332
source Wiley Online Library Journals Frontfile Complete
subjects anode materials
Bonding strength
Chemical bonds
Cobalt sulfide
Density functional theory
Diffusion barriers
Diffusion rate
Electrochemical analysis
electrochemical property
Electrode materials
Electrodes
Energy storage
high capacity
Interlayers
Ion diffusion
Ion storage
metal sulfides
Molybdenum disulfide
Nanotechnology
Organic chemistry
Porous media
Potassium
potassium‐ion batteries
Rechargeable batteries
Storage batteries
Storage systems
System effectiveness
title Multidimensional Integrated Chalcogenides Nanoarchitecture Achieves Highly Stable and Ultrafast Potassium‐Ion Storage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T02%3A53%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multidimensional%20Integrated%20Chalcogenides%20Nanoarchitecture%20Achieves%20Highly%20Stable%20and%20Ultrafast%20Potassium%E2%80%90Ion%20Storage&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Yang,%20Chao&rft.date=2019-10-01&rft.volume=15&rft.issue=44&rft.spage=e1903720&rft.epage=n/a&rft.pages=e1903720-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201903720&rft_dat=%3Cproquest_cross%3E2309649041%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2309649041&rft_id=info:pmid/31515943&rfr_iscdi=true