Interpretation of Compound Activity Predictions from Complex Machine Learning Models Using Local Approximations and Shapley Values
In qualitative or quantitative studies of structure–activity relationships (SARs), machine learning (ML) models are trained to recognize structural patterns that differentiate between active and inactive compounds. Understanding model decisions is challenging but of critical importance to guide comp...
Gespeichert in:
Veröffentlicht in: | Journal of medicinal chemistry 2020-08, Vol.63 (16), p.8761-8777 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8777 |
---|---|
container_issue | 16 |
container_start_page | 8761 |
container_title | Journal of medicinal chemistry |
container_volume | 63 |
creator | Rodríguez-Pérez, Raquel Bajorath, Jürgen |
description | In qualitative or quantitative studies of structure–activity relationships (SARs), machine learning (ML) models are trained to recognize structural patterns that differentiate between active and inactive compounds. Understanding model decisions is challenging but of critical importance to guide compound design. Moreover, the interpretation of ML results provides an additional level of model validation based on expert knowledge. A number of complex ML approaches, especially deep learning (DL) architectures, have distinctive black-box character. Herein, a locally interpretable explanatory method termed Shapley additive explanations (SHAP) is introduced for rationalizing activity predictions of any ML algorithm, regardless of its complexity. Models resulting from random forest (RF), nonlinear support vector machine (SVM), and deep neural network (DNN) learning are interpreted, and structural patterns determining the predicted probability of activity are identified and mapped onto test compounds. The results indicate that SHAP has high potential for rationalizing predictions of complex ML models. |
doi_str_mv | 10.1021/acs.jmedchem.9b01101 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2289573699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2289573699</sourcerecordid><originalsourceid>FETCH-LOGICAL-a460t-fb403d5983ecb520eb7bbec656c92b050f876004f3a53eba9e66aadfb9e2b693</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EgvL4Bwj5yCVlbSducqwqXlIRSBSuke1saFASBztB9Movx6UtR06Wtd_M7gwh5wzGDDi7UsaP3xsszBKbcaaBMWB7ZMQSDlGcQrxPRgCcR1xycUSOvX8HAMG4OCRHgiWMp3IyIt_3bY-uc9irvrIttSWd2aazQ1vQqemrz6pf0SeHRWXWc09LZ5tfpMYv-qDMsmqRzlG5tmrf6IMtsPb0xa8_c2tUTadd5-xX1aiNXgXj56UK8hV9VfWA_pQclKr2eLZ9T8ji5noxu4vmj7f3s-k8UrGEPip1DKJIslSg0SEk6onWaGQiTcY1JFCmEwkQl0IlArXKUEqlilJnyLXMxAm53NiGcz7C2j5vKm-wrlWLdvA552mWTITM1mi8QY2z3jss886FAG6VM8jX5eeh_HxXfr4tP8guthsGHWZ_ol3bAYAN8Cu3g2tD3v89fwDV6pcE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2289573699</pqid></control><display><type>article</type><title>Interpretation of Compound Activity Predictions from Complex Machine Learning Models Using Local Approximations and Shapley Values</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Rodríguez-Pérez, Raquel ; Bajorath, Jürgen</creator><creatorcontrib>Rodríguez-Pérez, Raquel ; Bajorath, Jürgen</creatorcontrib><description>In qualitative or quantitative studies of structure–activity relationships (SARs), machine learning (ML) models are trained to recognize structural patterns that differentiate between active and inactive compounds. Understanding model decisions is challenging but of critical importance to guide compound design. Moreover, the interpretation of ML results provides an additional level of model validation based on expert knowledge. A number of complex ML approaches, especially deep learning (DL) architectures, have distinctive black-box character. Herein, a locally interpretable explanatory method termed Shapley additive explanations (SHAP) is introduced for rationalizing activity predictions of any ML algorithm, regardless of its complexity. Models resulting from random forest (RF), nonlinear support vector machine (SVM), and deep neural network (DNN) learning are interpreted, and structural patterns determining the predicted probability of activity are identified and mapped onto test compounds. The results indicate that SHAP has high potential for rationalizing predictions of complex ML models.</description><identifier>ISSN: 0022-2623</identifier><identifier>EISSN: 1520-4804</identifier><identifier>DOI: 10.1021/acs.jmedchem.9b01101</identifier><identifier>PMID: 31512867</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Deep Learning - statistics & numerical data ; Organic Chemicals - chemistry ; Support Vector Machine - statistics & numerical data</subject><ispartof>Journal of medicinal chemistry, 2020-08, Vol.63 (16), p.8761-8777</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a460t-fb403d5983ecb520eb7bbec656c92b050f876004f3a53eba9e66aadfb9e2b693</citedby><cites>FETCH-LOGICAL-a460t-fb403d5983ecb520eb7bbec656c92b050f876004f3a53eba9e66aadfb9e2b693</cites><orcidid>0000-0002-0557-5714</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jmedchem.9b01101$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jmedchem.9b01101$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31512867$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rodríguez-Pérez, Raquel</creatorcontrib><creatorcontrib>Bajorath, Jürgen</creatorcontrib><title>Interpretation of Compound Activity Predictions from Complex Machine Learning Models Using Local Approximations and Shapley Values</title><title>Journal of medicinal chemistry</title><addtitle>J. Med. Chem</addtitle><description>In qualitative or quantitative studies of structure–activity relationships (SARs), machine learning (ML) models are trained to recognize structural patterns that differentiate between active and inactive compounds. Understanding model decisions is challenging but of critical importance to guide compound design. Moreover, the interpretation of ML results provides an additional level of model validation based on expert knowledge. A number of complex ML approaches, especially deep learning (DL) architectures, have distinctive black-box character. Herein, a locally interpretable explanatory method termed Shapley additive explanations (SHAP) is introduced for rationalizing activity predictions of any ML algorithm, regardless of its complexity. Models resulting from random forest (RF), nonlinear support vector machine (SVM), and deep neural network (DNN) learning are interpreted, and structural patterns determining the predicted probability of activity are identified and mapped onto test compounds. The results indicate that SHAP has high potential for rationalizing predictions of complex ML models.</description><subject>Deep Learning - statistics & numerical data</subject><subject>Organic Chemicals - chemistry</subject><subject>Support Vector Machine - statistics & numerical data</subject><issn>0022-2623</issn><issn>1520-4804</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtPwzAQhC0EgvL4Bwj5yCVlbSducqwqXlIRSBSuke1saFASBztB9Movx6UtR06Wtd_M7gwh5wzGDDi7UsaP3xsszBKbcaaBMWB7ZMQSDlGcQrxPRgCcR1xycUSOvX8HAMG4OCRHgiWMp3IyIt_3bY-uc9irvrIttSWd2aazQ1vQqemrz6pf0SeHRWXWc09LZ5tfpMYv-qDMsmqRzlG5tmrf6IMtsPb0xa8_c2tUTadd5-xX1aiNXgXj56UK8hV9VfWA_pQclKr2eLZ9T8ji5noxu4vmj7f3s-k8UrGEPip1DKJIslSg0SEk6onWaGQiTcY1JFCmEwkQl0IlArXKUEqlilJnyLXMxAm53NiGcz7C2j5vKm-wrlWLdvA552mWTITM1mi8QY2z3jss886FAG6VM8jX5eeh_HxXfr4tP8guthsGHWZ_ol3bAYAN8Cu3g2tD3v89fwDV6pcE</recordid><startdate>20200827</startdate><enddate>20200827</enddate><creator>Rodríguez-Pérez, Raquel</creator><creator>Bajorath, Jürgen</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0557-5714</orcidid></search><sort><creationdate>20200827</creationdate><title>Interpretation of Compound Activity Predictions from Complex Machine Learning Models Using Local Approximations and Shapley Values</title><author>Rodríguez-Pérez, Raquel ; Bajorath, Jürgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a460t-fb403d5983ecb520eb7bbec656c92b050f876004f3a53eba9e66aadfb9e2b693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Deep Learning - statistics & numerical data</topic><topic>Organic Chemicals - chemistry</topic><topic>Support Vector Machine - statistics & numerical data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodríguez-Pérez, Raquel</creatorcontrib><creatorcontrib>Bajorath, Jürgen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of medicinal chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodríguez-Pérez, Raquel</au><au>Bajorath, Jürgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interpretation of Compound Activity Predictions from Complex Machine Learning Models Using Local Approximations and Shapley Values</atitle><jtitle>Journal of medicinal chemistry</jtitle><addtitle>J. Med. Chem</addtitle><date>2020-08-27</date><risdate>2020</risdate><volume>63</volume><issue>16</issue><spage>8761</spage><epage>8777</epage><pages>8761-8777</pages><issn>0022-2623</issn><eissn>1520-4804</eissn><abstract>In qualitative or quantitative studies of structure–activity relationships (SARs), machine learning (ML) models are trained to recognize structural patterns that differentiate between active and inactive compounds. Understanding model decisions is challenging but of critical importance to guide compound design. Moreover, the interpretation of ML results provides an additional level of model validation based on expert knowledge. A number of complex ML approaches, especially deep learning (DL) architectures, have distinctive black-box character. Herein, a locally interpretable explanatory method termed Shapley additive explanations (SHAP) is introduced for rationalizing activity predictions of any ML algorithm, regardless of its complexity. Models resulting from random forest (RF), nonlinear support vector machine (SVM), and deep neural network (DNN) learning are interpreted, and structural patterns determining the predicted probability of activity are identified and mapped onto test compounds. The results indicate that SHAP has high potential for rationalizing predictions of complex ML models.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31512867</pmid><doi>10.1021/acs.jmedchem.9b01101</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-0557-5714</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2623 |
ispartof | Journal of medicinal chemistry, 2020-08, Vol.63 (16), p.8761-8777 |
issn | 0022-2623 1520-4804 |
language | eng |
recordid | cdi_proquest_miscellaneous_2289573699 |
source | MEDLINE; American Chemical Society Journals |
subjects | Deep Learning - statistics & numerical data Organic Chemicals - chemistry Support Vector Machine - statistics & numerical data |
title | Interpretation of Compound Activity Predictions from Complex Machine Learning Models Using Local Approximations and Shapley Values |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A36%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interpretation%20of%20Compound%20Activity%20Predictions%20from%20Complex%20Machine%20Learning%20Models%20Using%20Local%20Approximations%20and%20Shapley%20Values&rft.jtitle=Journal%20of%20medicinal%20chemistry&rft.au=Rodri%CC%81guez-Pe%CC%81rez,%20Raquel&rft.date=2020-08-27&rft.volume=63&rft.issue=16&rft.spage=8761&rft.epage=8777&rft.pages=8761-8777&rft.issn=0022-2623&rft.eissn=1520-4804&rft_id=info:doi/10.1021/acs.jmedchem.9b01101&rft_dat=%3Cproquest_cross%3E2289573699%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2289573699&rft_id=info:pmid/31512867&rfr_iscdi=true |