Strategy to boost catalytic activity of polymeric carbon nitride: synergistic effect of controllable in situ surface engineering and morphology

Polymeric carbon nitride (CN) is a promising metal-free catalyst plagued by a low intrinsic activity. Herein, a novel strategy based on controllable in situ surface engineering and morphology was developed to synergistically boost the catalytic activity of CN by tuning the hydroxyl groups on its sur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2019-09, Vol.11 (35), p.16393-16405
Hauptverfasser: Li, Yuan-Yuan, Si, Yuan, Zhou, Bing-Xin, Huang, Wei-Qing, Hu, Wangyu, Pan, Anlian, Fan, Xiaoxing, Huang, Gui-Fang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16405
container_issue 35
container_start_page 16393
container_title Nanoscale
container_volume 11
creator Li, Yuan-Yuan
Si, Yuan
Zhou, Bing-Xin
Huang, Wei-Qing
Hu, Wangyu
Pan, Anlian
Fan, Xiaoxing
Huang, Gui-Fang
description Polymeric carbon nitride (CN) is a promising metal-free catalyst plagued by a low intrinsic activity. Herein, a novel strategy based on controllable in situ surface engineering and morphology was developed to synergistically boost the catalytic activity of CN by tuning the hydroxyl groups on its surface and constructing a unique nanostructure. The controllable introduction of hydroxyl groups on CN nanoshells, prepared by the thermal condensation of oxygen-containing supramolecular precursors formed in water, led to spatial separation of the HOMO and LUMO, and effective exciton dissociation, as verified by experiments and ab initio calculations. Furthermore, the hollow hemispherical nanoshell endowed more exposed active sites, optimal mass transport, and dynamic modulations. The optimized hollow hemispherical CN nanoshells exhibited remarkable catalytic activity, with a photoelectrocatalytic OER overpotential of about 330 mV at a current density of 10 mA cm , outperforming state-of-the-art precious-metal catalyst IrO . High activity for the visible-light photocatalytic HER and pollutant degradation were also observed. This study proposes that, through rational surface group modification, a polymer material with high catalytic activity can be practically realized, which is promising for the design of efficient metal-free catalysts.
doi_str_mv 10.1039/c9nr05413h
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2289563333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2288680238</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-ec4a66501d359839bdffe94d8bf1afc1a6caf37b6fb406dc4c62534b71623da23</originalsourceid><addsrcrecordid>eNpdkdFqFTEQhkNRbD160weQgDdFODbJZHN2e1cOaoWiUPV6SbKTbcpucppkC_sUvrK7tvbCuZlh-OafH35CTjn7yBk057YJiVWSw-0RORFMsi3ATrx4npU8Jq9zvmNMNaDgFTkGLkHtVH1Cfv8oSRfsZ1oiNTHmQq0uepiLt1Tb4h98mWl09BCHecS0bK1OJgYafEm-wwua54Cp93m9QOfQlpW3MZQUh0GbAakPNPsy0Twlpy1SDL0PuKiFnurQ0TGmw20cYj-_IS-dHjK-feob8uvzp5_7q-319y9f95fXWwuVKFu0UitVMd5B1dTQmG553MiuNo5rZ7lWVjvYGeWMZKqz0ipRgTQ7rgR0WsCGnD3qHlK8nzCXdvTZ4uI3YJxyK0TdVArW2pD3_6F3cUphcbdStaqZgHqhPjxSNsWcE7r2kPyo09xy1q4xtfvm283fmK4W-N2T5GRG7J7Rf7nAHyAykPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2288680238</pqid></control><display><type>article</type><title>Strategy to boost catalytic activity of polymeric carbon nitride: synergistic effect of controllable in situ surface engineering and morphology</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Li, Yuan-Yuan ; Si, Yuan ; Zhou, Bing-Xin ; Huang, Wei-Qing ; Hu, Wangyu ; Pan, Anlian ; Fan, Xiaoxing ; Huang, Gui-Fang</creator><creatorcontrib>Li, Yuan-Yuan ; Si, Yuan ; Zhou, Bing-Xin ; Huang, Wei-Qing ; Hu, Wangyu ; Pan, Anlian ; Fan, Xiaoxing ; Huang, Gui-Fang</creatorcontrib><description>Polymeric carbon nitride (CN) is a promising metal-free catalyst plagued by a low intrinsic activity. Herein, a novel strategy based on controllable in situ surface engineering and morphology was developed to synergistically boost the catalytic activity of CN by tuning the hydroxyl groups on its surface and constructing a unique nanostructure. The controllable introduction of hydroxyl groups on CN nanoshells, prepared by the thermal condensation of oxygen-containing supramolecular precursors formed in water, led to spatial separation of the HOMO and LUMO, and effective exciton dissociation, as verified by experiments and ab initio calculations. Furthermore, the hollow hemispherical nanoshell endowed more exposed active sites, optimal mass transport, and dynamic modulations. The optimized hollow hemispherical CN nanoshells exhibited remarkable catalytic activity, with a photoelectrocatalytic OER overpotential of about 330 mV at a current density of 10 mA cm , outperforming state-of-the-art precious-metal catalyst IrO . High activity for the visible-light photocatalytic HER and pollutant degradation were also observed. This study proposes that, through rational surface group modification, a polymer material with high catalytic activity can be practically realized, which is promising for the design of efficient metal-free catalysts.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c9nr05413h</identifier><identifier>PMID: 31436768</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Carbon ; Carbon nitride ; Catalysis ; Catalysts ; Catalytic activity ; Condensates ; Excitons ; Hydroxyl groups ; Molecular orbitals ; Morphology ; Photodegradation ; Pollutants ; Synergistic effect</subject><ispartof>Nanoscale, 2019-09, Vol.11 (35), p.16393-16405</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-ec4a66501d359839bdffe94d8bf1afc1a6caf37b6fb406dc4c62534b71623da23</citedby><cites>FETCH-LOGICAL-c352t-ec4a66501d359839bdffe94d8bf1afc1a6caf37b6fb406dc4c62534b71623da23</cites><orcidid>0000-0003-4834-7452 ; 0000-0001-7416-3994 ; 0000-0001-7237-5168 ; 0000-0002-3450-0551 ; 0000-0001-5679-7395 ; 0000-0003-3335-3067 ; 0000-0001-9115-8038 ; 0000-0002-9621-8332</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31436768$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yuan-Yuan</creatorcontrib><creatorcontrib>Si, Yuan</creatorcontrib><creatorcontrib>Zhou, Bing-Xin</creatorcontrib><creatorcontrib>Huang, Wei-Qing</creatorcontrib><creatorcontrib>Hu, Wangyu</creatorcontrib><creatorcontrib>Pan, Anlian</creatorcontrib><creatorcontrib>Fan, Xiaoxing</creatorcontrib><creatorcontrib>Huang, Gui-Fang</creatorcontrib><title>Strategy to boost catalytic activity of polymeric carbon nitride: synergistic effect of controllable in situ surface engineering and morphology</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Polymeric carbon nitride (CN) is a promising metal-free catalyst plagued by a low intrinsic activity. Herein, a novel strategy based on controllable in situ surface engineering and morphology was developed to synergistically boost the catalytic activity of CN by tuning the hydroxyl groups on its surface and constructing a unique nanostructure. The controllable introduction of hydroxyl groups on CN nanoshells, prepared by the thermal condensation of oxygen-containing supramolecular precursors formed in water, led to spatial separation of the HOMO and LUMO, and effective exciton dissociation, as verified by experiments and ab initio calculations. Furthermore, the hollow hemispherical nanoshell endowed more exposed active sites, optimal mass transport, and dynamic modulations. The optimized hollow hemispherical CN nanoshells exhibited remarkable catalytic activity, with a photoelectrocatalytic OER overpotential of about 330 mV at a current density of 10 mA cm , outperforming state-of-the-art precious-metal catalyst IrO . High activity for the visible-light photocatalytic HER and pollutant degradation were also observed. This study proposes that, through rational surface group modification, a polymer material with high catalytic activity can be practically realized, which is promising for the design of efficient metal-free catalysts.</description><subject>Carbon</subject><subject>Carbon nitride</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Condensates</subject><subject>Excitons</subject><subject>Hydroxyl groups</subject><subject>Molecular orbitals</subject><subject>Morphology</subject><subject>Photodegradation</subject><subject>Pollutants</subject><subject>Synergistic effect</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkdFqFTEQhkNRbD160weQgDdFODbJZHN2e1cOaoWiUPV6SbKTbcpucppkC_sUvrK7tvbCuZlh-OafH35CTjn7yBk057YJiVWSw-0RORFMsi3ATrx4npU8Jq9zvmNMNaDgFTkGLkHtVH1Cfv8oSRfsZ1oiNTHmQq0uepiLt1Tb4h98mWl09BCHecS0bK1OJgYafEm-wwua54Cp93m9QOfQlpW3MZQUh0GbAakPNPsy0Twlpy1SDL0PuKiFnurQ0TGmw20cYj-_IS-dHjK-feob8uvzp5_7q-319y9f95fXWwuVKFu0UitVMd5B1dTQmG553MiuNo5rZ7lWVjvYGeWMZKqz0ipRgTQ7rgR0WsCGnD3qHlK8nzCXdvTZ4uI3YJxyK0TdVArW2pD3_6F3cUphcbdStaqZgHqhPjxSNsWcE7r2kPyo09xy1q4xtfvm283fmK4W-N2T5GRG7J7Rf7nAHyAykPg</recordid><startdate>20190921</startdate><enddate>20190921</enddate><creator>Li, Yuan-Yuan</creator><creator>Si, Yuan</creator><creator>Zhou, Bing-Xin</creator><creator>Huang, Wei-Qing</creator><creator>Hu, Wangyu</creator><creator>Pan, Anlian</creator><creator>Fan, Xiaoxing</creator><creator>Huang, Gui-Fang</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4834-7452</orcidid><orcidid>https://orcid.org/0000-0001-7416-3994</orcidid><orcidid>https://orcid.org/0000-0001-7237-5168</orcidid><orcidid>https://orcid.org/0000-0002-3450-0551</orcidid><orcidid>https://orcid.org/0000-0001-5679-7395</orcidid><orcidid>https://orcid.org/0000-0003-3335-3067</orcidid><orcidid>https://orcid.org/0000-0001-9115-8038</orcidid><orcidid>https://orcid.org/0000-0002-9621-8332</orcidid></search><sort><creationdate>20190921</creationdate><title>Strategy to boost catalytic activity of polymeric carbon nitride: synergistic effect of controllable in situ surface engineering and morphology</title><author>Li, Yuan-Yuan ; Si, Yuan ; Zhou, Bing-Xin ; Huang, Wei-Qing ; Hu, Wangyu ; Pan, Anlian ; Fan, Xiaoxing ; Huang, Gui-Fang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-ec4a66501d359839bdffe94d8bf1afc1a6caf37b6fb406dc4c62534b71623da23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Carbon</topic><topic>Carbon nitride</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Condensates</topic><topic>Excitons</topic><topic>Hydroxyl groups</topic><topic>Molecular orbitals</topic><topic>Morphology</topic><topic>Photodegradation</topic><topic>Pollutants</topic><topic>Synergistic effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yuan-Yuan</creatorcontrib><creatorcontrib>Si, Yuan</creatorcontrib><creatorcontrib>Zhou, Bing-Xin</creatorcontrib><creatorcontrib>Huang, Wei-Qing</creatorcontrib><creatorcontrib>Hu, Wangyu</creatorcontrib><creatorcontrib>Pan, Anlian</creatorcontrib><creatorcontrib>Fan, Xiaoxing</creatorcontrib><creatorcontrib>Huang, Gui-Fang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yuan-Yuan</au><au>Si, Yuan</au><au>Zhou, Bing-Xin</au><au>Huang, Wei-Qing</au><au>Hu, Wangyu</au><au>Pan, Anlian</au><au>Fan, Xiaoxing</au><au>Huang, Gui-Fang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strategy to boost catalytic activity of polymeric carbon nitride: synergistic effect of controllable in situ surface engineering and morphology</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2019-09-21</date><risdate>2019</risdate><volume>11</volume><issue>35</issue><spage>16393</spage><epage>16405</epage><pages>16393-16405</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Polymeric carbon nitride (CN) is a promising metal-free catalyst plagued by a low intrinsic activity. Herein, a novel strategy based on controllable in situ surface engineering and morphology was developed to synergistically boost the catalytic activity of CN by tuning the hydroxyl groups on its surface and constructing a unique nanostructure. The controllable introduction of hydroxyl groups on CN nanoshells, prepared by the thermal condensation of oxygen-containing supramolecular precursors formed in water, led to spatial separation of the HOMO and LUMO, and effective exciton dissociation, as verified by experiments and ab initio calculations. Furthermore, the hollow hemispherical nanoshell endowed more exposed active sites, optimal mass transport, and dynamic modulations. The optimized hollow hemispherical CN nanoshells exhibited remarkable catalytic activity, with a photoelectrocatalytic OER overpotential of about 330 mV at a current density of 10 mA cm , outperforming state-of-the-art precious-metal catalyst IrO . High activity for the visible-light photocatalytic HER and pollutant degradation were also observed. This study proposes that, through rational surface group modification, a polymer material with high catalytic activity can be practically realized, which is promising for the design of efficient metal-free catalysts.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>31436768</pmid><doi>10.1039/c9nr05413h</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4834-7452</orcidid><orcidid>https://orcid.org/0000-0001-7416-3994</orcidid><orcidid>https://orcid.org/0000-0001-7237-5168</orcidid><orcidid>https://orcid.org/0000-0002-3450-0551</orcidid><orcidid>https://orcid.org/0000-0001-5679-7395</orcidid><orcidid>https://orcid.org/0000-0003-3335-3067</orcidid><orcidid>https://orcid.org/0000-0001-9115-8038</orcidid><orcidid>https://orcid.org/0000-0002-9621-8332</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2019-09, Vol.11 (35), p.16393-16405
issn 2040-3364
2040-3372
language eng
recordid cdi_proquest_miscellaneous_2289563333
source Royal Society Of Chemistry Journals 2008-
subjects Carbon
Carbon nitride
Catalysis
Catalysts
Catalytic activity
Condensates
Excitons
Hydroxyl groups
Molecular orbitals
Morphology
Photodegradation
Pollutants
Synergistic effect
title Strategy to boost catalytic activity of polymeric carbon nitride: synergistic effect of controllable in situ surface engineering and morphology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A57%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strategy%20to%20boost%20catalytic%20activity%20of%20polymeric%20carbon%20nitride:%20synergistic%20effect%20of%20controllable%20in%20situ%20surface%20engineering%20and%20morphology&rft.jtitle=Nanoscale&rft.au=Li,%20Yuan-Yuan&rft.date=2019-09-21&rft.volume=11&rft.issue=35&rft.spage=16393&rft.epage=16405&rft.pages=16393-16405&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c9nr05413h&rft_dat=%3Cproquest_cross%3E2288680238%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2288680238&rft_id=info:pmid/31436768&rfr_iscdi=true