Two-dimensional Legendre polynomials as a basis for interpolation of data to optimize the solution of the irradiance transport equation analyzed as a boundary problem on surfaces testing

In this paper, we give a solution to the irradiance transport equation (ITE) using the two-dimensional (2D) Legendre polynomials (LPs) and an interpolator (i-LP) based on the LP. In the first place, we analyze the experimental data; subsequently, we proceed to fit the most probable 2D LPs' surf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied optics (2004) 2019-06, Vol.58 (18), p.5057-5066
Hauptverfasser: Arriaga-Hernández, J A, Cuevas-Otahola, B, Oliveros-Oliveros, J, Morín-Castillo, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5066
container_issue 18
container_start_page 5057
container_title Applied optics (2004)
container_volume 58
creator Arriaga-Hernández, J A
Cuevas-Otahola, B
Oliveros-Oliveros, J
Morín-Castillo, M
description In this paper, we give a solution to the irradiance transport equation (ITE) using the two-dimensional (2D) Legendre polynomials (LPs) and an interpolator (i-LP) based on the LP. In the first place, we analyze the experimental data; subsequently, we proceed to fit the most probable 2D LPs' surface to the data in order to obtain the wavefront surface ( ( , ) of the elements under test) as a solution of the ITE differential equation associated with a boundary problem; and finally, we interpolate the resulting fitting. The interpolation is built from LP to increase the resolution and sharpness of the data. We apply the ITE to these results in order to obtain the wavefront as a nondeterministic solution that increases the resolution of the ITE as an optical test, and we compare our results regarding the obtained aberration surfaces ( ( , )).
doi_str_mv 10.1364/AO.58.005057
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2288720329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2288720329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-fc8414ea9eba0af1b67d1b085d69b9768990261fff9f316661d9f1f5c7d2a6223</originalsourceid><addsrcrecordid>eNpdkc1rHCEYxqU0JNs0t56L0EsPna0fq6PHJfQjsLCXFHobnPE1NczoRB3K5k_rX1eX3fRQEFTen8_zvj4IvaNkTbncfN7u10KtCRFEtK_QilEhGk6leI1W9agbytTPK_Qm50dCuNjo9hJdcSoIV1yu0J_737GxfoKQfQxmxDt4gGAT4DmOhxAnb8aMTV24N9ln7GLCPhRItW5KfYOjw9YUg0vEcS5-8s-Ayy_AOY7LC3C8-5SM9SYMtZxMyHNMBcPTclIx1fzwDPbsFZdgTTrgOcV-hAlXIi_JmQEyLpCLDw9v0YWrzcHNeb9GP75-ub_93uz23-5ut7tm4FSXxg1qQzdgNPSGGEd72VraEyWs1L1updKaMEmdc9rVf5OSWu2oE0NrmZGM8Wv08aRbe3laqnc3-TzAOJoAcckdY0q1jHCmK_rhP_QxLqlOdqRqQIpqLiv16UQNKeacwHVz8lOdtqOkO2babfedUN0p04q_P4su_QT2H_wSIv8Lhc6ghg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250581936</pqid></control><display><type>article</type><title>Two-dimensional Legendre polynomials as a basis for interpolation of data to optimize the solution of the irradiance transport equation analyzed as a boundary problem on surfaces testing</title><source>Alma/SFX Local Collection</source><source>Optica Publishing Group Journals</source><creator>Arriaga-Hernández, J A ; Cuevas-Otahola, B ; Oliveros-Oliveros, J ; Morín-Castillo, M</creator><creatorcontrib>Arriaga-Hernández, J A ; Cuevas-Otahola, B ; Oliveros-Oliveros, J ; Morín-Castillo, M</creatorcontrib><description>In this paper, we give a solution to the irradiance transport equation (ITE) using the two-dimensional (2D) Legendre polynomials (LPs) and an interpolator (i-LP) based on the LP. In the first place, we analyze the experimental data; subsequently, we proceed to fit the most probable 2D LPs' surface to the data in order to obtain the wavefront surface ( ( , ) of the elements under test) as a solution of the ITE differential equation associated with a boundary problem; and finally, we interpolate the resulting fitting. The interpolation is built from LP to increase the resolution and sharpness of the data. We apply the ITE to these results in order to obtain the wavefront as a nondeterministic solution that increases the resolution of the ITE as an optical test, and we compare our results regarding the obtained aberration surfaces ( ( , )).</description><identifier>ISSN: 1559-128X</identifier><identifier>EISSN: 2155-3165</identifier><identifier>EISSN: 1539-4522</identifier><identifier>DOI: 10.1364/AO.58.005057</identifier><identifier>PMID: 31503836</identifier><language>eng</language><publisher>United States: Optical Society of America</publisher><subject>Differential equations ; Interpolation ; Irradiance ; Polynomials ; Sharpness ; Transport equations ; Wave fronts</subject><ispartof>Applied optics (2004), 2019-06, Vol.58 (18), p.5057-5066</ispartof><rights>Copyright Optical Society of America Jun 20, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-fc8414ea9eba0af1b67d1b085d69b9768990261fff9f316661d9f1f5c7d2a6223</citedby><cites>FETCH-LOGICAL-c319t-fc8414ea9eba0af1b67d1b085d69b9768990261fff9f316661d9f1f5c7d2a6223</cites><orcidid>0000-0002-1046-1500 ; 0000-0002-9121-5917 ; 0000-0001-8059-9399 ; 0000-0002-1715-3631</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3244,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31503836$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arriaga-Hernández, J A</creatorcontrib><creatorcontrib>Cuevas-Otahola, B</creatorcontrib><creatorcontrib>Oliveros-Oliveros, J</creatorcontrib><creatorcontrib>Morín-Castillo, M</creatorcontrib><title>Two-dimensional Legendre polynomials as a basis for interpolation of data to optimize the solution of the irradiance transport equation analyzed as a boundary problem on surfaces testing</title><title>Applied optics (2004)</title><addtitle>Appl Opt</addtitle><description>In this paper, we give a solution to the irradiance transport equation (ITE) using the two-dimensional (2D) Legendre polynomials (LPs) and an interpolator (i-LP) based on the LP. In the first place, we analyze the experimental data; subsequently, we proceed to fit the most probable 2D LPs' surface to the data in order to obtain the wavefront surface ( ( , ) of the elements under test) as a solution of the ITE differential equation associated with a boundary problem; and finally, we interpolate the resulting fitting. The interpolation is built from LP to increase the resolution and sharpness of the data. We apply the ITE to these results in order to obtain the wavefront as a nondeterministic solution that increases the resolution of the ITE as an optical test, and we compare our results regarding the obtained aberration surfaces ( ( , )).</description><subject>Differential equations</subject><subject>Interpolation</subject><subject>Irradiance</subject><subject>Polynomials</subject><subject>Sharpness</subject><subject>Transport equations</subject><subject>Wave fronts</subject><issn>1559-128X</issn><issn>2155-3165</issn><issn>1539-4522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkc1rHCEYxqU0JNs0t56L0EsPna0fq6PHJfQjsLCXFHobnPE1NczoRB3K5k_rX1eX3fRQEFTen8_zvj4IvaNkTbncfN7u10KtCRFEtK_QilEhGk6leI1W9agbytTPK_Qm50dCuNjo9hJdcSoIV1yu0J_737GxfoKQfQxmxDt4gGAT4DmOhxAnb8aMTV24N9ln7GLCPhRItW5KfYOjw9YUg0vEcS5-8s-Ayy_AOY7LC3C8-5SM9SYMtZxMyHNMBcPTclIx1fzwDPbsFZdgTTrgOcV-hAlXIi_JmQEyLpCLDw9v0YWrzcHNeb9GP75-ub_93uz23-5ut7tm4FSXxg1qQzdgNPSGGEd72VraEyWs1L1updKaMEmdc9rVf5OSWu2oE0NrmZGM8Wv08aRbe3laqnc3-TzAOJoAcckdY0q1jHCmK_rhP_QxLqlOdqRqQIpqLiv16UQNKeacwHVz8lOdtqOkO2babfedUN0p04q_P4su_QT2H_wSIv8Lhc6ghg</recordid><startdate>20190620</startdate><enddate>20190620</enddate><creator>Arriaga-Hernández, J A</creator><creator>Cuevas-Otahola, B</creator><creator>Oliveros-Oliveros, J</creator><creator>Morín-Castillo, M</creator><general>Optical Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1046-1500</orcidid><orcidid>https://orcid.org/0000-0002-9121-5917</orcidid><orcidid>https://orcid.org/0000-0001-8059-9399</orcidid><orcidid>https://orcid.org/0000-0002-1715-3631</orcidid></search><sort><creationdate>20190620</creationdate><title>Two-dimensional Legendre polynomials as a basis for interpolation of data to optimize the solution of the irradiance transport equation analyzed as a boundary problem on surfaces testing</title><author>Arriaga-Hernández, J A ; Cuevas-Otahola, B ; Oliveros-Oliveros, J ; Morín-Castillo, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-fc8414ea9eba0af1b67d1b085d69b9768990261fff9f316661d9f1f5c7d2a6223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Differential equations</topic><topic>Interpolation</topic><topic>Irradiance</topic><topic>Polynomials</topic><topic>Sharpness</topic><topic>Transport equations</topic><topic>Wave fronts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arriaga-Hernández, J A</creatorcontrib><creatorcontrib>Cuevas-Otahola, B</creatorcontrib><creatorcontrib>Oliveros-Oliveros, J</creatorcontrib><creatorcontrib>Morín-Castillo, M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Applied optics (2004)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arriaga-Hernández, J A</au><au>Cuevas-Otahola, B</au><au>Oliveros-Oliveros, J</au><au>Morín-Castillo, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-dimensional Legendre polynomials as a basis for interpolation of data to optimize the solution of the irradiance transport equation analyzed as a boundary problem on surfaces testing</atitle><jtitle>Applied optics (2004)</jtitle><addtitle>Appl Opt</addtitle><date>2019-06-20</date><risdate>2019</risdate><volume>58</volume><issue>18</issue><spage>5057</spage><epage>5066</epage><pages>5057-5066</pages><issn>1559-128X</issn><eissn>2155-3165</eissn><eissn>1539-4522</eissn><abstract>In this paper, we give a solution to the irradiance transport equation (ITE) using the two-dimensional (2D) Legendre polynomials (LPs) and an interpolator (i-LP) based on the LP. In the first place, we analyze the experimental data; subsequently, we proceed to fit the most probable 2D LPs' surface to the data in order to obtain the wavefront surface ( ( , ) of the elements under test) as a solution of the ITE differential equation associated with a boundary problem; and finally, we interpolate the resulting fitting. The interpolation is built from LP to increase the resolution and sharpness of the data. We apply the ITE to these results in order to obtain the wavefront as a nondeterministic solution that increases the resolution of the ITE as an optical test, and we compare our results regarding the obtained aberration surfaces ( ( , )).</abstract><cop>United States</cop><pub>Optical Society of America</pub><pmid>31503836</pmid><doi>10.1364/AO.58.005057</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1046-1500</orcidid><orcidid>https://orcid.org/0000-0002-9121-5917</orcidid><orcidid>https://orcid.org/0000-0001-8059-9399</orcidid><orcidid>https://orcid.org/0000-0002-1715-3631</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1559-128X
ispartof Applied optics (2004), 2019-06, Vol.58 (18), p.5057-5066
issn 1559-128X
2155-3165
1539-4522
language eng
recordid cdi_proquest_miscellaneous_2288720329
source Alma/SFX Local Collection; Optica Publishing Group Journals
subjects Differential equations
Interpolation
Irradiance
Polynomials
Sharpness
Transport equations
Wave fronts
title Two-dimensional Legendre polynomials as a basis for interpolation of data to optimize the solution of the irradiance transport equation analyzed as a boundary problem on surfaces testing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T10%3A47%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-dimensional%20Legendre%20polynomials%20as%20a%20basis%20for%20interpolation%20of%20data%20to%20optimize%20the%20solution%20of%20the%20irradiance%20transport%20equation%20analyzed%20as%20a%20boundary%20problem%20on%20surfaces%20testing&rft.jtitle=Applied%20optics%20(2004)&rft.au=Arriaga-Hern%C3%A1ndez,%20J%20A&rft.date=2019-06-20&rft.volume=58&rft.issue=18&rft.spage=5057&rft.epage=5066&rft.pages=5057-5066&rft.issn=1559-128X&rft.eissn=2155-3165&rft_id=info:doi/10.1364/AO.58.005057&rft_dat=%3Cproquest_cross%3E2288720329%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2250581936&rft_id=info:pmid/31503836&rfr_iscdi=true