Effect of structural distortions on articular cartilage permeability under large deformations
The permeability of articular cartilage has a key role in load support and lubrication in diarthrodial joints. The microstructural rearrangement and consequent alteration in permeability caused by the large deformations undergone by cartilage have been previously modelled with a multi-scale approach...
Gespeichert in:
Veröffentlicht in: | Biomechanics and modeling in mechanobiology 2020-02, Vol.19 (1), p.317-334 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 334 |
---|---|
container_issue | 1 |
container_start_page | 317 |
container_title | Biomechanics and modeling in mechanobiology |
container_volume | 19 |
creator | Maleki, Mohsen Hashlamoun, Kotaybah Herzog, Walter Federico, Salvatore |
description | The permeability of articular cartilage has a key role in load support and lubrication in diarthrodial joints. The microstructural rearrangement and consequent alteration in permeability caused by the large deformations undergone by cartilage have been previously modelled with a multi-scale approach. At the microscopic scale, the tissue is regarded as a homogeneous fluid-filled proteoglycan matrix reinforced by collagen fibres. A material point is described by a representative element of volume (REV), comprising a collagen fibre surrounded by a jacket of fluid-saturated proteoglycan matrix. At the macroscopic scale, the statistical orientation of the fibres is accounted for via averaging of the REV over all possible directions. The previous models accounted for volumetric deformation and fibre reorientation, but did not consider the
cross-sectional distortion
of the REV, which changes the widths of the fluid channels in different directions. We account for REV cross-sectional distortion and demonstrate its effects by simulating confined compression tests for the superficial, middle and deep zones of articular cartilage. The proposed model captures published experimental results that were not reproduced correctly by the previous models, and shows that each factor (volumetric deformation, fibre reorientation, REV cross-sectional distortion) can be dominant, depending on fibre orientation and amount of compression, implying that all three factors should be accounted for when modelling cartilage permeability. |
doi_str_mv | 10.1007/s10237-019-01213-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2288715085</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2288715085</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-d12bf1f292f7b8a112d748eee955fc18d62a5dc22a47a9649b110631615275b93</originalsourceid><addsrcrecordid>eNp9kEtPxCAUhYnR6Pj4Ay4MiRs3VS6UAkszGR_JJG50aQilMKlpywjtwn8v44yauHBBOMn9zoF7EDoHcg2EiJsEhDJREFD5UGBFtYdmUIEohCrJ_o_m6ggdp_RGCCVMskN0xICTSlZshl4X3js74uBxGuNkxymaDjdtGkMc2zAkHAZssrRTZyK2G9mZlcNrF3tn6rZrxw88DY2LOAN50DgfYm--zKfowJsuubPdfYJe7hbP84di-XT_OL9dFrYEOhYN0NqDp4p6UUsDQBtRSuec4txbkE1FDW8spaYURlWlqgFIxfJ6nApeK3aCrra56xjeJ5dG3bfJuq4zgwtT0pRKKfLOkmf08g_6FqY45N9tKCGBKiIyRbeUjSGl6Lxex7Y38UMD0Zvy9bZ8ncvXX-XrKpsudtFT3bvmx_LddgbYFkh5NKxc_H37n9hP1faPpA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2287812907</pqid></control><display><type>article</type><title>Effect of structural distortions on articular cartilage permeability under large deformations</title><source>SpringerLink Journals - AutoHoldings</source><creator>Maleki, Mohsen ; Hashlamoun, Kotaybah ; Herzog, Walter ; Federico, Salvatore</creator><creatorcontrib>Maleki, Mohsen ; Hashlamoun, Kotaybah ; Herzog, Walter ; Federico, Salvatore</creatorcontrib><description>The permeability of articular cartilage has a key role in load support and lubrication in diarthrodial joints. The microstructural rearrangement and consequent alteration in permeability caused by the large deformations undergone by cartilage have been previously modelled with a multi-scale approach. At the microscopic scale, the tissue is regarded as a homogeneous fluid-filled proteoglycan matrix reinforced by collagen fibres. A material point is described by a representative element of volume (REV), comprising a collagen fibre surrounded by a jacket of fluid-saturated proteoglycan matrix. At the macroscopic scale, the statistical orientation of the fibres is accounted for via averaging of the REV over all possible directions. The previous models accounted for volumetric deformation and fibre reorientation, but did not consider the
cross-sectional distortion
of the REV, which changes the widths of the fluid channels in different directions. We account for REV cross-sectional distortion and demonstrate its effects by simulating confined compression tests for the superficial, middle and deep zones of articular cartilage. The proposed model captures published experimental results that were not reproduced correctly by the previous models, and shows that each factor (volumetric deformation, fibre reorientation, REV cross-sectional distortion) can be dominant, depending on fibre orientation and amount of compression, implying that all three factors should be accounted for when modelling cartilage permeability.</description><identifier>ISSN: 1617-7959</identifier><identifier>EISSN: 1617-7940</identifier><identifier>DOI: 10.1007/s10237-019-01213-6</identifier><identifier>PMID: 31506863</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biological and Medical Physics ; Biomedical Engineering and Bioengineering ; Biophysics ; Cartilage ; Cartilage (articular) ; Collagen ; Compression ; Compression tests ; Compression zone ; Computer simulation ; Deformation effects ; Distortion ; Engineering ; Fiber orientation ; Fibers ; Lubrication ; Original Paper ; Permeability ; Proteoglycans ; Space life sciences ; Theoretical and Applied Mechanics</subject><ispartof>Biomechanics and modeling in mechanobiology, 2020-02, Vol.19 (1), p.317-334</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Biomechanics and Modeling in Mechanobiology is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-d12bf1f292f7b8a112d748eee955fc18d62a5dc22a47a9649b110631615275b93</citedby><cites>FETCH-LOGICAL-c412t-d12bf1f292f7b8a112d748eee955fc18d62a5dc22a47a9649b110631615275b93</cites><orcidid>0000-0003-0866-1121</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10237-019-01213-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10237-019-01213-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31506863$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maleki, Mohsen</creatorcontrib><creatorcontrib>Hashlamoun, Kotaybah</creatorcontrib><creatorcontrib>Herzog, Walter</creatorcontrib><creatorcontrib>Federico, Salvatore</creatorcontrib><title>Effect of structural distortions on articular cartilage permeability under large deformations</title><title>Biomechanics and modeling in mechanobiology</title><addtitle>Biomech Model Mechanobiol</addtitle><addtitle>Biomech Model Mechanobiol</addtitle><description>The permeability of articular cartilage has a key role in load support and lubrication in diarthrodial joints. The microstructural rearrangement and consequent alteration in permeability caused by the large deformations undergone by cartilage have been previously modelled with a multi-scale approach. At the microscopic scale, the tissue is regarded as a homogeneous fluid-filled proteoglycan matrix reinforced by collagen fibres. A material point is described by a representative element of volume (REV), comprising a collagen fibre surrounded by a jacket of fluid-saturated proteoglycan matrix. At the macroscopic scale, the statistical orientation of the fibres is accounted for via averaging of the REV over all possible directions. The previous models accounted for volumetric deformation and fibre reorientation, but did not consider the
cross-sectional distortion
of the REV, which changes the widths of the fluid channels in different directions. We account for REV cross-sectional distortion and demonstrate its effects by simulating confined compression tests for the superficial, middle and deep zones of articular cartilage. The proposed model captures published experimental results that were not reproduced correctly by the previous models, and shows that each factor (volumetric deformation, fibre reorientation, REV cross-sectional distortion) can be dominant, depending on fibre orientation and amount of compression, implying that all three factors should be accounted for when modelling cartilage permeability.</description><subject>Biological and Medical Physics</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biophysics</subject><subject>Cartilage</subject><subject>Cartilage (articular)</subject><subject>Collagen</subject><subject>Compression</subject><subject>Compression tests</subject><subject>Compression zone</subject><subject>Computer simulation</subject><subject>Deformation effects</subject><subject>Distortion</subject><subject>Engineering</subject><subject>Fiber orientation</subject><subject>Fibers</subject><subject>Lubrication</subject><subject>Original Paper</subject><subject>Permeability</subject><subject>Proteoglycans</subject><subject>Space life sciences</subject><subject>Theoretical and Applied Mechanics</subject><issn>1617-7959</issn><issn>1617-7940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtPxCAUhYnR6Pj4Ay4MiRs3VS6UAkszGR_JJG50aQilMKlpywjtwn8v44yauHBBOMn9zoF7EDoHcg2EiJsEhDJREFD5UGBFtYdmUIEohCrJ_o_m6ggdp_RGCCVMskN0xICTSlZshl4X3js74uBxGuNkxymaDjdtGkMc2zAkHAZssrRTZyK2G9mZlcNrF3tn6rZrxw88DY2LOAN50DgfYm--zKfowJsuubPdfYJe7hbP84di-XT_OL9dFrYEOhYN0NqDp4p6UUsDQBtRSuec4txbkE1FDW8spaYURlWlqgFIxfJ6nApeK3aCrra56xjeJ5dG3bfJuq4zgwtT0pRKKfLOkmf08g_6FqY45N9tKCGBKiIyRbeUjSGl6Lxex7Y38UMD0Zvy9bZ8ncvXX-XrKpsudtFT3bvmx_LddgbYFkh5NKxc_H37n9hP1faPpA</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Maleki, Mohsen</creator><creator>Hashlamoun, Kotaybah</creator><creator>Herzog, Walter</creator><creator>Federico, Salvatore</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TB</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0866-1121</orcidid></search><sort><creationdate>20200201</creationdate><title>Effect of structural distortions on articular cartilage permeability under large deformations</title><author>Maleki, Mohsen ; Hashlamoun, Kotaybah ; Herzog, Walter ; Federico, Salvatore</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-d12bf1f292f7b8a112d748eee955fc18d62a5dc22a47a9649b110631615275b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biological and Medical Physics</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biophysics</topic><topic>Cartilage</topic><topic>Cartilage (articular)</topic><topic>Collagen</topic><topic>Compression</topic><topic>Compression tests</topic><topic>Compression zone</topic><topic>Computer simulation</topic><topic>Deformation effects</topic><topic>Distortion</topic><topic>Engineering</topic><topic>Fiber orientation</topic><topic>Fibers</topic><topic>Lubrication</topic><topic>Original Paper</topic><topic>Permeability</topic><topic>Proteoglycans</topic><topic>Space life sciences</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maleki, Mohsen</creatorcontrib><creatorcontrib>Hashlamoun, Kotaybah</creatorcontrib><creatorcontrib>Herzog, Walter</creatorcontrib><creatorcontrib>Federico, Salvatore</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Biomechanics and modeling in mechanobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maleki, Mohsen</au><au>Hashlamoun, Kotaybah</au><au>Herzog, Walter</au><au>Federico, Salvatore</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of structural distortions on articular cartilage permeability under large deformations</atitle><jtitle>Biomechanics and modeling in mechanobiology</jtitle><stitle>Biomech Model Mechanobiol</stitle><addtitle>Biomech Model Mechanobiol</addtitle><date>2020-02-01</date><risdate>2020</risdate><volume>19</volume><issue>1</issue><spage>317</spage><epage>334</epage><pages>317-334</pages><issn>1617-7959</issn><eissn>1617-7940</eissn><abstract>The permeability of articular cartilage has a key role in load support and lubrication in diarthrodial joints. The microstructural rearrangement and consequent alteration in permeability caused by the large deformations undergone by cartilage have been previously modelled with a multi-scale approach. At the microscopic scale, the tissue is regarded as a homogeneous fluid-filled proteoglycan matrix reinforced by collagen fibres. A material point is described by a representative element of volume (REV), comprising a collagen fibre surrounded by a jacket of fluid-saturated proteoglycan matrix. At the macroscopic scale, the statistical orientation of the fibres is accounted for via averaging of the REV over all possible directions. The previous models accounted for volumetric deformation and fibre reorientation, but did not consider the
cross-sectional distortion
of the REV, which changes the widths of the fluid channels in different directions. We account for REV cross-sectional distortion and demonstrate its effects by simulating confined compression tests for the superficial, middle and deep zones of articular cartilage. The proposed model captures published experimental results that were not reproduced correctly by the previous models, and shows that each factor (volumetric deformation, fibre reorientation, REV cross-sectional distortion) can be dominant, depending on fibre orientation and amount of compression, implying that all three factors should be accounted for when modelling cartilage permeability.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>31506863</pmid><doi>10.1007/s10237-019-01213-6</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-0866-1121</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1617-7959 |
ispartof | Biomechanics and modeling in mechanobiology, 2020-02, Vol.19 (1), p.317-334 |
issn | 1617-7959 1617-7940 |
language | eng |
recordid | cdi_proquest_miscellaneous_2288715085 |
source | SpringerLink Journals - AutoHoldings |
subjects | Biological and Medical Physics Biomedical Engineering and Bioengineering Biophysics Cartilage Cartilage (articular) Collagen Compression Compression tests Compression zone Computer simulation Deformation effects Distortion Engineering Fiber orientation Fibers Lubrication Original Paper Permeability Proteoglycans Space life sciences Theoretical and Applied Mechanics |
title | Effect of structural distortions on articular cartilage permeability under large deformations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T09%3A31%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20structural%20distortions%20on%20articular%20cartilage%20permeability%20under%20large%20deformations&rft.jtitle=Biomechanics%20and%20modeling%20in%20mechanobiology&rft.au=Maleki,%20Mohsen&rft.date=2020-02-01&rft.volume=19&rft.issue=1&rft.spage=317&rft.epage=334&rft.pages=317-334&rft.issn=1617-7959&rft.eissn=1617-7940&rft_id=info:doi/10.1007/s10237-019-01213-6&rft_dat=%3Cproquest_cross%3E2288715085%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2287812907&rft_id=info:pmid/31506863&rfr_iscdi=true |