An analytical model for the upper bound estimation of respiratory motion–induced dose uncertainty in spot‐scanning proton beam therapy

Purpose We developed an analytical model of a spot‐scanning beam delivery system to estimate the upper bound of respiratory motion–induced dose uncertainty for a given treatment plan. Methods The effective delivery time for each spot position in the treatment plan was calculated on the basis of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical physics (Lancaster) 2019-11, Vol.46 (11), p.5249-5261
Hauptverfasser: Li, Heng, Zhang, Xiaodong, Li, Yupeng, Zhu, Ronald X.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5261
container_issue 11
container_start_page 5249
container_title Medical physics (Lancaster)
container_volume 46
creator Li, Heng
Zhang, Xiaodong
Li, Yupeng
Zhu, Ronald X.
description Purpose We developed an analytical model of a spot‐scanning beam delivery system to estimate the upper bound of respiratory motion–induced dose uncertainty for a given treatment plan. Methods The effective delivery time for each spot position in the treatment plan was calculated on the basis of the parameters of the delivery system. The upper bound of the dose uncertainty was then calculated as a function of the effective delivery time. Two‐dimensional (2D) measurements with a detector array on a one‐dimensional moving platform were obtained to validate the model. Results We performed 351 two‐dimensional measurements on a moving platform for different delivery sequences of a single‐layer uniform pattern and patient treatment field. The measured dose uncertainty was a strong function of the effective delivery time: The shortest effective delivery time resulted in a maximum absolute dose error of >90%, while the longest ones resulted in a maximum absolute dose error of 4.9% for a single layer and 9.7% for a patient field with heterogeneity. The relationship of the effective delivery time and the measured dose uncertainty followed the analytical formula. Conclusions With our analytical model, the upper bound of the dose uncertainty due to motion can be estimated in spot‐scanning proton therapy without four‐dimensional dynamic dose calculation.
doi_str_mv 10.1002/mp.13811
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2288012069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2288012069</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3871-fdbe15d192e6e424298eae43976ab7997e8eef02ef0dfd3556654230f5f3b84d3</originalsourceid><addsrcrecordid>eNp1kM1qFjEUhoNY7NcqeAWSpZupJz_ztyzFaqFiF-16yExONDKTxCSDzK5rV4J32Csxn1_VlYtD4PC8T5KXkJcMzhgAf7OEMyY6xp6QHZetqCSH_inZAfSy4hLqY3KS0hcAaEQNz8ixYDXwphM78v3cUeXUvGU7qZkuXuNMjY80f0a6hoCRjn51mmLKdlHZeke9oRFTsFFlH7eS2W8f7n9ap9cJNdU-laybMGZlXd6odTQFnx_uf6RJOWfdJxqiz0U1olr2V0UVtufkyKg54YvH85TcXb69vXhfXX98d3Vxfl1NomtZZfSIrNas59ig5JL3HSqUom8bNbZ932KHaICX0UaLum6aWnIBpjZi7KQWp-T1wVve8HUt_xoWmyacZ-XQr2ngvOuAcWj6f-gUfUoRzRBiaSFuA4Nh3_ywhOF38wV99WhdxwX1X_BP1QWoDsA3O-P2X9Hw4eYg_AU0y5FQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2288012069</pqid></control><display><type>article</type><title>An analytical model for the upper bound estimation of respiratory motion–induced dose uncertainty in spot‐scanning proton beam therapy</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>Alma/SFX Local Collection</source><creator>Li, Heng ; Zhang, Xiaodong ; Li, Yupeng ; Zhu, Ronald X.</creator><creatorcontrib>Li, Heng ; Zhang, Xiaodong ; Li, Yupeng ; Zhu, Ronald X.</creatorcontrib><description>Purpose We developed an analytical model of a spot‐scanning beam delivery system to estimate the upper bound of respiratory motion–induced dose uncertainty for a given treatment plan. Methods The effective delivery time for each spot position in the treatment plan was calculated on the basis of the parameters of the delivery system. The upper bound of the dose uncertainty was then calculated as a function of the effective delivery time. Two‐dimensional (2D) measurements with a detector array on a one‐dimensional moving platform were obtained to validate the model. Results We performed 351 two‐dimensional measurements on a moving platform for different delivery sequences of a single‐layer uniform pattern and patient treatment field. The measured dose uncertainty was a strong function of the effective delivery time: The shortest effective delivery time resulted in a maximum absolute dose error of &gt;90%, while the longest ones resulted in a maximum absolute dose error of 4.9% for a single layer and 9.7% for a patient field with heterogeneity. The relationship of the effective delivery time and the measured dose uncertainty followed the analytical formula. Conclusions With our analytical model, the upper bound of the dose uncertainty due to motion can be estimated in spot‐scanning proton therapy without four‐dimensional dynamic dose calculation.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1002/mp.13811</identifier><identifier>PMID: 31502683</identifier><language>eng</language><publisher>United States</publisher><subject>Humans ; Models, Theoretical ; motion ; Movement ; Proton Therapy ; Radiation Dosage ; Radiotherapy Dosage ; Radiotherapy Planning, Computer-Assisted ; Respiration ; spot scanning ; Uncertainty</subject><ispartof>Medical physics (Lancaster), 2019-11, Vol.46 (11), p.5249-5261</ispartof><rights>2019 American Association of Physicists in Medicine</rights><rights>2019 American Association of Physicists in Medicine.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3871-fdbe15d192e6e424298eae43976ab7997e8eef02ef0dfd3556654230f5f3b84d3</citedby><cites>FETCH-LOGICAL-c3871-fdbe15d192e6e424298eae43976ab7997e8eef02ef0dfd3556654230f5f3b84d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmp.13811$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmp.13811$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27931,27932,45581,45582</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31502683$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Heng</creatorcontrib><creatorcontrib>Zhang, Xiaodong</creatorcontrib><creatorcontrib>Li, Yupeng</creatorcontrib><creatorcontrib>Zhu, Ronald X.</creatorcontrib><title>An analytical model for the upper bound estimation of respiratory motion–induced dose uncertainty in spot‐scanning proton beam therapy</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>Purpose We developed an analytical model of a spot‐scanning beam delivery system to estimate the upper bound of respiratory motion–induced dose uncertainty for a given treatment plan. Methods The effective delivery time for each spot position in the treatment plan was calculated on the basis of the parameters of the delivery system. The upper bound of the dose uncertainty was then calculated as a function of the effective delivery time. Two‐dimensional (2D) measurements with a detector array on a one‐dimensional moving platform were obtained to validate the model. Results We performed 351 two‐dimensional measurements on a moving platform for different delivery sequences of a single‐layer uniform pattern and patient treatment field. The measured dose uncertainty was a strong function of the effective delivery time: The shortest effective delivery time resulted in a maximum absolute dose error of &gt;90%, while the longest ones resulted in a maximum absolute dose error of 4.9% for a single layer and 9.7% for a patient field with heterogeneity. The relationship of the effective delivery time and the measured dose uncertainty followed the analytical formula. Conclusions With our analytical model, the upper bound of the dose uncertainty due to motion can be estimated in spot‐scanning proton therapy without four‐dimensional dynamic dose calculation.</description><subject>Humans</subject><subject>Models, Theoretical</subject><subject>motion</subject><subject>Movement</subject><subject>Proton Therapy</subject><subject>Radiation Dosage</subject><subject>Radiotherapy Dosage</subject><subject>Radiotherapy Planning, Computer-Assisted</subject><subject>Respiration</subject><subject>spot scanning</subject><subject>Uncertainty</subject><issn>0094-2405</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM1qFjEUhoNY7NcqeAWSpZupJz_ztyzFaqFiF-16yExONDKTxCSDzK5rV4J32Csxn1_VlYtD4PC8T5KXkJcMzhgAf7OEMyY6xp6QHZetqCSH_inZAfSy4hLqY3KS0hcAaEQNz8ixYDXwphM78v3cUeXUvGU7qZkuXuNMjY80f0a6hoCRjn51mmLKdlHZeke9oRFTsFFlH7eS2W8f7n9ap9cJNdU-laybMGZlXd6odTQFnx_uf6RJOWfdJxqiz0U1olr2V0UVtufkyKg54YvH85TcXb69vXhfXX98d3Vxfl1NomtZZfSIrNas59ig5JL3HSqUom8bNbZ932KHaICX0UaLum6aWnIBpjZi7KQWp-T1wVve8HUt_xoWmyacZ-XQr2ngvOuAcWj6f-gUfUoRzRBiaSFuA4Nh3_ywhOF38wV99WhdxwX1X_BP1QWoDsA3O-P2X9Hw4eYg_AU0y5FQ</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Li, Heng</creator><creator>Zhang, Xiaodong</creator><creator>Li, Yupeng</creator><creator>Zhu, Ronald X.</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201911</creationdate><title>An analytical model for the upper bound estimation of respiratory motion–induced dose uncertainty in spot‐scanning proton beam therapy</title><author>Li, Heng ; Zhang, Xiaodong ; Li, Yupeng ; Zhu, Ronald X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3871-fdbe15d192e6e424298eae43976ab7997e8eef02ef0dfd3556654230f5f3b84d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Humans</topic><topic>Models, Theoretical</topic><topic>motion</topic><topic>Movement</topic><topic>Proton Therapy</topic><topic>Radiation Dosage</topic><topic>Radiotherapy Dosage</topic><topic>Radiotherapy Planning, Computer-Assisted</topic><topic>Respiration</topic><topic>spot scanning</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Heng</creatorcontrib><creatorcontrib>Zhang, Xiaodong</creatorcontrib><creatorcontrib>Li, Yupeng</creatorcontrib><creatorcontrib>Zhu, Ronald X.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Heng</au><au>Zhang, Xiaodong</au><au>Li, Yupeng</au><au>Zhu, Ronald X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An analytical model for the upper bound estimation of respiratory motion–induced dose uncertainty in spot‐scanning proton beam therapy</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>2019-11</date><risdate>2019</risdate><volume>46</volume><issue>11</issue><spage>5249</spage><epage>5261</epage><pages>5249-5261</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><abstract>Purpose We developed an analytical model of a spot‐scanning beam delivery system to estimate the upper bound of respiratory motion–induced dose uncertainty for a given treatment plan. Methods The effective delivery time for each spot position in the treatment plan was calculated on the basis of the parameters of the delivery system. The upper bound of the dose uncertainty was then calculated as a function of the effective delivery time. Two‐dimensional (2D) measurements with a detector array on a one‐dimensional moving platform were obtained to validate the model. Results We performed 351 two‐dimensional measurements on a moving platform for different delivery sequences of a single‐layer uniform pattern and patient treatment field. The measured dose uncertainty was a strong function of the effective delivery time: The shortest effective delivery time resulted in a maximum absolute dose error of &gt;90%, while the longest ones resulted in a maximum absolute dose error of 4.9% for a single layer and 9.7% for a patient field with heterogeneity. The relationship of the effective delivery time and the measured dose uncertainty followed the analytical formula. Conclusions With our analytical model, the upper bound of the dose uncertainty due to motion can be estimated in spot‐scanning proton therapy without four‐dimensional dynamic dose calculation.</abstract><cop>United States</cop><pmid>31502683</pmid><doi>10.1002/mp.13811</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-2405
ispartof Medical physics (Lancaster), 2019-11, Vol.46 (11), p.5249-5261
issn 0094-2405
2473-4209
language eng
recordid cdi_proquest_miscellaneous_2288012069
source MEDLINE; Access via Wiley Online Library; Alma/SFX Local Collection
subjects Humans
Models, Theoretical
motion
Movement
Proton Therapy
Radiation Dosage
Radiotherapy Dosage
Radiotherapy Planning, Computer-Assisted
Respiration
spot scanning
Uncertainty
title An analytical model for the upper bound estimation of respiratory motion–induced dose uncertainty in spot‐scanning proton beam therapy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T06%3A06%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20analytical%20model%20for%20the%20upper%20bound%20estimation%20of%20respiratory%20motion%E2%80%93induced%20dose%20uncertainty%20in%20spot%E2%80%90scanning%20proton%20beam%20therapy&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Li,%20Heng&rft.date=2019-11&rft.volume=46&rft.issue=11&rft.spage=5249&rft.epage=5261&rft.pages=5249-5261&rft.issn=0094-2405&rft.eissn=2473-4209&rft_id=info:doi/10.1002/mp.13811&rft_dat=%3Cproquest_cross%3E2288012069%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2288012069&rft_id=info:pmid/31502683&rfr_iscdi=true