An analytical model for the upper bound estimation of respiratory motion–induced dose uncertainty in spot‐scanning proton beam therapy
Purpose We developed an analytical model of a spot‐scanning beam delivery system to estimate the upper bound of respiratory motion–induced dose uncertainty for a given treatment plan. Methods The effective delivery time for each spot position in the treatment plan was calculated on the basis of the...
Gespeichert in:
Veröffentlicht in: | Medical physics (Lancaster) 2019-11, Vol.46 (11), p.5249-5261 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5261 |
---|---|
container_issue | 11 |
container_start_page | 5249 |
container_title | Medical physics (Lancaster) |
container_volume | 46 |
creator | Li, Heng Zhang, Xiaodong Li, Yupeng Zhu, Ronald X. |
description | Purpose
We developed an analytical model of a spot‐scanning beam delivery system to estimate the upper bound of respiratory motion–induced dose uncertainty for a given treatment plan.
Methods
The effective delivery time for each spot position in the treatment plan was calculated on the basis of the parameters of the delivery system. The upper bound of the dose uncertainty was then calculated as a function of the effective delivery time. Two‐dimensional (2D) measurements with a detector array on a one‐dimensional moving platform were obtained to validate the model.
Results
We performed 351 two‐dimensional measurements on a moving platform for different delivery sequences of a single‐layer uniform pattern and patient treatment field. The measured dose uncertainty was a strong function of the effective delivery time: The shortest effective delivery time resulted in a maximum absolute dose error of >90%, while the longest ones resulted in a maximum absolute dose error of 4.9% for a single layer and 9.7% for a patient field with heterogeneity. The relationship of the effective delivery time and the measured dose uncertainty followed the analytical formula.
Conclusions
With our analytical model, the upper bound of the dose uncertainty due to motion can be estimated in spot‐scanning proton therapy without four‐dimensional dynamic dose calculation. |
doi_str_mv | 10.1002/mp.13811 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2288012069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2288012069</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3871-fdbe15d192e6e424298eae43976ab7997e8eef02ef0dfd3556654230f5f3b84d3</originalsourceid><addsrcrecordid>eNp1kM1qFjEUhoNY7NcqeAWSpZupJz_ztyzFaqFiF-16yExONDKTxCSDzK5rV4J32Csxn1_VlYtD4PC8T5KXkJcMzhgAf7OEMyY6xp6QHZetqCSH_inZAfSy4hLqY3KS0hcAaEQNz8ixYDXwphM78v3cUeXUvGU7qZkuXuNMjY80f0a6hoCRjn51mmLKdlHZeke9oRFTsFFlH7eS2W8f7n9ap9cJNdU-laybMGZlXd6odTQFnx_uf6RJOWfdJxqiz0U1olr2V0UVtufkyKg54YvH85TcXb69vXhfXX98d3Vxfl1NomtZZfSIrNas59ig5JL3HSqUom8bNbZ932KHaICX0UaLum6aWnIBpjZi7KQWp-T1wVve8HUt_xoWmyacZ-XQr2ngvOuAcWj6f-gUfUoRzRBiaSFuA4Nh3_ywhOF38wV99WhdxwX1X_BP1QWoDsA3O-P2X9Hw4eYg_AU0y5FQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2288012069</pqid></control><display><type>article</type><title>An analytical model for the upper bound estimation of respiratory motion–induced dose uncertainty in spot‐scanning proton beam therapy</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>Alma/SFX Local Collection</source><creator>Li, Heng ; Zhang, Xiaodong ; Li, Yupeng ; Zhu, Ronald X.</creator><creatorcontrib>Li, Heng ; Zhang, Xiaodong ; Li, Yupeng ; Zhu, Ronald X.</creatorcontrib><description>Purpose
We developed an analytical model of a spot‐scanning beam delivery system to estimate the upper bound of respiratory motion–induced dose uncertainty for a given treatment plan.
Methods
The effective delivery time for each spot position in the treatment plan was calculated on the basis of the parameters of the delivery system. The upper bound of the dose uncertainty was then calculated as a function of the effective delivery time. Two‐dimensional (2D) measurements with a detector array on a one‐dimensional moving platform were obtained to validate the model.
Results
We performed 351 two‐dimensional measurements on a moving platform for different delivery sequences of a single‐layer uniform pattern and patient treatment field. The measured dose uncertainty was a strong function of the effective delivery time: The shortest effective delivery time resulted in a maximum absolute dose error of >90%, while the longest ones resulted in a maximum absolute dose error of 4.9% for a single layer and 9.7% for a patient field with heterogeneity. The relationship of the effective delivery time and the measured dose uncertainty followed the analytical formula.
Conclusions
With our analytical model, the upper bound of the dose uncertainty due to motion can be estimated in spot‐scanning proton therapy without four‐dimensional dynamic dose calculation.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1002/mp.13811</identifier><identifier>PMID: 31502683</identifier><language>eng</language><publisher>United States</publisher><subject>Humans ; Models, Theoretical ; motion ; Movement ; Proton Therapy ; Radiation Dosage ; Radiotherapy Dosage ; Radiotherapy Planning, Computer-Assisted ; Respiration ; spot scanning ; Uncertainty</subject><ispartof>Medical physics (Lancaster), 2019-11, Vol.46 (11), p.5249-5261</ispartof><rights>2019 American Association of Physicists in Medicine</rights><rights>2019 American Association of Physicists in Medicine.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3871-fdbe15d192e6e424298eae43976ab7997e8eef02ef0dfd3556654230f5f3b84d3</citedby><cites>FETCH-LOGICAL-c3871-fdbe15d192e6e424298eae43976ab7997e8eef02ef0dfd3556654230f5f3b84d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmp.13811$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmp.13811$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27931,27932,45581,45582</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31502683$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Heng</creatorcontrib><creatorcontrib>Zhang, Xiaodong</creatorcontrib><creatorcontrib>Li, Yupeng</creatorcontrib><creatorcontrib>Zhu, Ronald X.</creatorcontrib><title>An analytical model for the upper bound estimation of respiratory motion–induced dose uncertainty in spot‐scanning proton beam therapy</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>Purpose
We developed an analytical model of a spot‐scanning beam delivery system to estimate the upper bound of respiratory motion–induced dose uncertainty for a given treatment plan.
Methods
The effective delivery time for each spot position in the treatment plan was calculated on the basis of the parameters of the delivery system. The upper bound of the dose uncertainty was then calculated as a function of the effective delivery time. Two‐dimensional (2D) measurements with a detector array on a one‐dimensional moving platform were obtained to validate the model.
Results
We performed 351 two‐dimensional measurements on a moving platform for different delivery sequences of a single‐layer uniform pattern and patient treatment field. The measured dose uncertainty was a strong function of the effective delivery time: The shortest effective delivery time resulted in a maximum absolute dose error of >90%, while the longest ones resulted in a maximum absolute dose error of 4.9% for a single layer and 9.7% for a patient field with heterogeneity. The relationship of the effective delivery time and the measured dose uncertainty followed the analytical formula.
Conclusions
With our analytical model, the upper bound of the dose uncertainty due to motion can be estimated in spot‐scanning proton therapy without four‐dimensional dynamic dose calculation.</description><subject>Humans</subject><subject>Models, Theoretical</subject><subject>motion</subject><subject>Movement</subject><subject>Proton Therapy</subject><subject>Radiation Dosage</subject><subject>Radiotherapy Dosage</subject><subject>Radiotherapy Planning, Computer-Assisted</subject><subject>Respiration</subject><subject>spot scanning</subject><subject>Uncertainty</subject><issn>0094-2405</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM1qFjEUhoNY7NcqeAWSpZupJz_ztyzFaqFiF-16yExONDKTxCSDzK5rV4J32Csxn1_VlYtD4PC8T5KXkJcMzhgAf7OEMyY6xp6QHZetqCSH_inZAfSy4hLqY3KS0hcAaEQNz8ixYDXwphM78v3cUeXUvGU7qZkuXuNMjY80f0a6hoCRjn51mmLKdlHZeke9oRFTsFFlH7eS2W8f7n9ap9cJNdU-laybMGZlXd6odTQFnx_uf6RJOWfdJxqiz0U1olr2V0UVtufkyKg54YvH85TcXb69vXhfXX98d3Vxfl1NomtZZfSIrNas59ig5JL3HSqUom8bNbZ932KHaICX0UaLum6aWnIBpjZi7KQWp-T1wVve8HUt_xoWmyacZ-XQr2ngvOuAcWj6f-gUfUoRzRBiaSFuA4Nh3_ywhOF38wV99WhdxwX1X_BP1QWoDsA3O-P2X9Hw4eYg_AU0y5FQ</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Li, Heng</creator><creator>Zhang, Xiaodong</creator><creator>Li, Yupeng</creator><creator>Zhu, Ronald X.</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201911</creationdate><title>An analytical model for the upper bound estimation of respiratory motion–induced dose uncertainty in spot‐scanning proton beam therapy</title><author>Li, Heng ; Zhang, Xiaodong ; Li, Yupeng ; Zhu, Ronald X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3871-fdbe15d192e6e424298eae43976ab7997e8eef02ef0dfd3556654230f5f3b84d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Humans</topic><topic>Models, Theoretical</topic><topic>motion</topic><topic>Movement</topic><topic>Proton Therapy</topic><topic>Radiation Dosage</topic><topic>Radiotherapy Dosage</topic><topic>Radiotherapy Planning, Computer-Assisted</topic><topic>Respiration</topic><topic>spot scanning</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Heng</creatorcontrib><creatorcontrib>Zhang, Xiaodong</creatorcontrib><creatorcontrib>Li, Yupeng</creatorcontrib><creatorcontrib>Zhu, Ronald X.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Heng</au><au>Zhang, Xiaodong</au><au>Li, Yupeng</au><au>Zhu, Ronald X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An analytical model for the upper bound estimation of respiratory motion–induced dose uncertainty in spot‐scanning proton beam therapy</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>2019-11</date><risdate>2019</risdate><volume>46</volume><issue>11</issue><spage>5249</spage><epage>5261</epage><pages>5249-5261</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><abstract>Purpose
We developed an analytical model of a spot‐scanning beam delivery system to estimate the upper bound of respiratory motion–induced dose uncertainty for a given treatment plan.
Methods
The effective delivery time for each spot position in the treatment plan was calculated on the basis of the parameters of the delivery system. The upper bound of the dose uncertainty was then calculated as a function of the effective delivery time. Two‐dimensional (2D) measurements with a detector array on a one‐dimensional moving platform were obtained to validate the model.
Results
We performed 351 two‐dimensional measurements on a moving platform for different delivery sequences of a single‐layer uniform pattern and patient treatment field. The measured dose uncertainty was a strong function of the effective delivery time: The shortest effective delivery time resulted in a maximum absolute dose error of >90%, while the longest ones resulted in a maximum absolute dose error of 4.9% for a single layer and 9.7% for a patient field with heterogeneity. The relationship of the effective delivery time and the measured dose uncertainty followed the analytical formula.
Conclusions
With our analytical model, the upper bound of the dose uncertainty due to motion can be estimated in spot‐scanning proton therapy without four‐dimensional dynamic dose calculation.</abstract><cop>United States</cop><pmid>31502683</pmid><doi>10.1002/mp.13811</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-2405 |
ispartof | Medical physics (Lancaster), 2019-11, Vol.46 (11), p.5249-5261 |
issn | 0094-2405 2473-4209 |
language | eng |
recordid | cdi_proquest_miscellaneous_2288012069 |
source | MEDLINE; Access via Wiley Online Library; Alma/SFX Local Collection |
subjects | Humans Models, Theoretical motion Movement Proton Therapy Radiation Dosage Radiotherapy Dosage Radiotherapy Planning, Computer-Assisted Respiration spot scanning Uncertainty |
title | An analytical model for the upper bound estimation of respiratory motion–induced dose uncertainty in spot‐scanning proton beam therapy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T06%3A06%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20analytical%20model%20for%20the%20upper%20bound%20estimation%20of%20respiratory%20motion%E2%80%93induced%20dose%20uncertainty%20in%20spot%E2%80%90scanning%20proton%20beam%20therapy&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Li,%20Heng&rft.date=2019-11&rft.volume=46&rft.issue=11&rft.spage=5249&rft.epage=5261&rft.pages=5249-5261&rft.issn=0094-2405&rft.eissn=2473-4209&rft_id=info:doi/10.1002/mp.13811&rft_dat=%3Cproquest_cross%3E2288012069%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2288012069&rft_id=info:pmid/31502683&rfr_iscdi=true |