A target‐group‐change couple with mass defect filtering strategy to identify the metabolites of “Dogel ebs” in rats plasma, urine and bile
“Dogel ebs” was known as Sophora flavescens Ait., a classical traditional Chinese Mongolian herbal medicine, which had the effects on damp‐heat dysentery, scrofula, and syndrome of accumulated dampness toxicity. Although the chemical constituents have been clarified by our previous studies, the meta...
Gespeichert in:
Veröffentlicht in: | Journal of separation science 2019-11, Vol.42 (21), p.3382-3389 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3389 |
---|---|
container_issue | 21 |
container_start_page | 3382 |
container_title | Journal of separation science |
container_volume | 42 |
creator | Dong, Xin Li, XiaoNa Li, Na Zhao, HongMei GuLa, A Zhang, Xuan Zhang, Ping Bao, BaoQuan |
description | “Dogel ebs” was known as Sophora flavescens Ait., a classical traditional Chinese Mongolian herbal medicine, which had the effects on damp‐heat dysentery, scrofula, and syndrome of accumulated dampness toxicity. Although the chemical constituents have been clarified by our previous studies, the metabolic transformation of “Dogel ebs” in vivo was still unclear. To explore the mechanism of “Dogel ebs,” the metabolites in plasma, bile, and urine samples were investigated. A fast positive and negative ion switching technology was used for the simultaneous determination of flavonoids and alkaloids in “Dogel ebs” in a single run. And a target‐group‐change coupled with mass defect filtering strategy was utilized to analyze the collected data. 89 parent compounds and 82 metabolites were characterized by high‐performance liquid chromatography with quadrupole exactive Orbitrap mass spectrometry. Both phase I and phase II metabolites were observed and the metabolic pathways involved in oxidation, demethylation, acetylation, and glucuronidation. 69 metabolites of “Dogel ebs,” including three hydroxyls bonding xanthohumol, formononetin‐7‐O‐glucuronide, 2′‐hydroxyl‐isoxanthohumol decarboxylation metabolite, oxysophocarpine dehydrogen, 9α‐hydroxysophoramine‐O‐glucuronide, etc. were reported for the first time. |
doi_str_mv | 10.1002/jssc.201900466 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2288011872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2312140286</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3209-9c4fb267fbf11976fe0b801a03a4634180c1025caaf034306a909acd61d874ae3</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhiMEoqVw5YhG4sKhu4ztrJMcq4UCVSUOhXPkOOOsV06y2I6qve0joJ7Ly-2T4GrbPXDhNDPSN59G82fZW4Zzhsg_rkPQc46sQsylfJadMskWs0qw_PmxR3mSvQphjciKssKX2YlgCxSiLE-zuwuIyncU97vfnR-nTap6pYaOQKfJEdzauIJehQAtGdIRjHWRvB06CNGrSN0W4gi2pSFak_oVQU9RNaOzkQKMBva7-09jRw6oCfvdH7ADpMUAG6dCr85hSjYCNbTQWEevsxdGuUBvHutZ9vPy84_l19n19y_flhfXMy04VrNK56bhsjCNYawqpCFsSmQKhcqlyFmJmiFfaKUMijw9QVVYKd1K1pZFrkicZR8O3o0ff00UYt3boMk5NdA4hZrzMvlYWfCEvv8HXY-TH9J1NReMsxx5KRM1P1DajyF4MvXG2175bc2wfkirfkirPqaVFt49aqemp_aIP8WTgPwA3Ka_bP-jq69ubpZyISvxF6DVpPk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312140286</pqid></control><display><type>article</type><title>A target‐group‐change couple with mass defect filtering strategy to identify the metabolites of “Dogel ebs” in rats plasma, urine and bile</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Dong, Xin ; Li, XiaoNa ; Li, Na ; Zhao, HongMei ; GuLa, A ; Zhang, Xuan ; Zhang, Ping ; Bao, BaoQuan</creator><creatorcontrib>Dong, Xin ; Li, XiaoNa ; Li, Na ; Zhao, HongMei ; GuLa, A ; Zhang, Xuan ; Zhang, Ping ; Bao, BaoQuan</creatorcontrib><description>“Dogel ebs” was known as Sophora flavescens Ait., a classical traditional Chinese Mongolian herbal medicine, which had the effects on damp‐heat dysentery, scrofula, and syndrome of accumulated dampness toxicity. Although the chemical constituents have been clarified by our previous studies, the metabolic transformation of “Dogel ebs” in vivo was still unclear. To explore the mechanism of “Dogel ebs,” the metabolites in plasma, bile, and urine samples were investigated. A fast positive and negative ion switching technology was used for the simultaneous determination of flavonoids and alkaloids in “Dogel ebs” in a single run. And a target‐group‐change coupled with mass defect filtering strategy was utilized to analyze the collected data. 89 parent compounds and 82 metabolites were characterized by high‐performance liquid chromatography with quadrupole exactive Orbitrap mass spectrometry. Both phase I and phase II metabolites were observed and the metabolic pathways involved in oxidation, demethylation, acetylation, and glucuronidation. 69 metabolites of “Dogel ebs,” including three hydroxyls bonding xanthohumol, formononetin‐7‐O‐glucuronide, 2′‐hydroxyl‐isoxanthohumol decarboxylation metabolite, oxysophocarpine dehydrogen, 9α‐hydroxysophoramine‐O‐glucuronide, etc. were reported for the first time.</description><identifier>ISSN: 1615-9306</identifier><identifier>EISSN: 1615-9314</identifier><identifier>DOI: 10.1002/jssc.201900466</identifier><identifier>PMID: 31503388</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Acetylation ; Alkaloids ; Animals ; Bile - chemistry ; Bile - metabolism ; Biocompatibility ; Decarboxylation ; Dogel ebs ; Drugs, Chinese Herbal - analysis ; Drugs, Chinese Herbal - metabolism ; Filtration ; Flavonoids ; Herbal medicine ; In vivo methods and tests ; Liquid chromatography ; Male ; mass defect filtering ; Mass spectrometry ; Medicine, Chinese Traditional ; Metabolism ; Metabolites ; Moisture content ; Molecular Conformation ; Molecular Weight ; Negative ions ; Organic chemistry ; Oxidation ; Quadrupoles ; Rats ; Rats, Wistar ; target‐group‐change ; Toxicity ; traditional Chinese medicine ; Urine</subject><ispartof>Journal of separation science, 2019-11, Vol.42 (21), p.3382-3389</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3209-9c4fb267fbf11976fe0b801a03a4634180c1025caaf034306a909acd61d874ae3</citedby><cites>FETCH-LOGICAL-c3209-9c4fb267fbf11976fe0b801a03a4634180c1025caaf034306a909acd61d874ae3</cites><orcidid>0000-0003-0229-3372</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjssc.201900466$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjssc.201900466$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31503388$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dong, Xin</creatorcontrib><creatorcontrib>Li, XiaoNa</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><creatorcontrib>Zhao, HongMei</creatorcontrib><creatorcontrib>GuLa, A</creatorcontrib><creatorcontrib>Zhang, Xuan</creatorcontrib><creatorcontrib>Zhang, Ping</creatorcontrib><creatorcontrib>Bao, BaoQuan</creatorcontrib><title>A target‐group‐change couple with mass defect filtering strategy to identify the metabolites of “Dogel ebs” in rats plasma, urine and bile</title><title>Journal of separation science</title><addtitle>J Sep Sci</addtitle><description>“Dogel ebs” was known as Sophora flavescens Ait., a classical traditional Chinese Mongolian herbal medicine, which had the effects on damp‐heat dysentery, scrofula, and syndrome of accumulated dampness toxicity. Although the chemical constituents have been clarified by our previous studies, the metabolic transformation of “Dogel ebs” in vivo was still unclear. To explore the mechanism of “Dogel ebs,” the metabolites in plasma, bile, and urine samples were investigated. A fast positive and negative ion switching technology was used for the simultaneous determination of flavonoids and alkaloids in “Dogel ebs” in a single run. And a target‐group‐change coupled with mass defect filtering strategy was utilized to analyze the collected data. 89 parent compounds and 82 metabolites were characterized by high‐performance liquid chromatography with quadrupole exactive Orbitrap mass spectrometry. Both phase I and phase II metabolites were observed and the metabolic pathways involved in oxidation, demethylation, acetylation, and glucuronidation. 69 metabolites of “Dogel ebs,” including three hydroxyls bonding xanthohumol, formononetin‐7‐O‐glucuronide, 2′‐hydroxyl‐isoxanthohumol decarboxylation metabolite, oxysophocarpine dehydrogen, 9α‐hydroxysophoramine‐O‐glucuronide, etc. were reported for the first time.</description><subject>Acetylation</subject><subject>Alkaloids</subject><subject>Animals</subject><subject>Bile - chemistry</subject><subject>Bile - metabolism</subject><subject>Biocompatibility</subject><subject>Decarboxylation</subject><subject>Dogel ebs</subject><subject>Drugs, Chinese Herbal - analysis</subject><subject>Drugs, Chinese Herbal - metabolism</subject><subject>Filtration</subject><subject>Flavonoids</subject><subject>Herbal medicine</subject><subject>In vivo methods and tests</subject><subject>Liquid chromatography</subject><subject>Male</subject><subject>mass defect filtering</subject><subject>Mass spectrometry</subject><subject>Medicine, Chinese Traditional</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Moisture content</subject><subject>Molecular Conformation</subject><subject>Molecular Weight</subject><subject>Negative ions</subject><subject>Organic chemistry</subject><subject>Oxidation</subject><subject>Quadrupoles</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>target‐group‐change</subject><subject>Toxicity</subject><subject>traditional Chinese medicine</subject><subject>Urine</subject><issn>1615-9306</issn><issn>1615-9314</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFu1DAQhiMEoqVw5YhG4sKhu4ztrJMcq4UCVSUOhXPkOOOsV06y2I6qve0joJ7Ly-2T4GrbPXDhNDPSN59G82fZW4Zzhsg_rkPQc46sQsylfJadMskWs0qw_PmxR3mSvQphjciKssKX2YlgCxSiLE-zuwuIyncU97vfnR-nTap6pYaOQKfJEdzauIJehQAtGdIRjHWRvB06CNGrSN0W4gi2pSFak_oVQU9RNaOzkQKMBva7-09jRw6oCfvdH7ADpMUAG6dCr85hSjYCNbTQWEevsxdGuUBvHutZ9vPy84_l19n19y_flhfXMy04VrNK56bhsjCNYawqpCFsSmQKhcqlyFmJmiFfaKUMijw9QVVYKd1K1pZFrkicZR8O3o0ff00UYt3boMk5NdA4hZrzMvlYWfCEvv8HXY-TH9J1NReMsxx5KRM1P1DajyF4MvXG2175bc2wfkirfkirPqaVFt49aqemp_aIP8WTgPwA3Ka_bP-jq69ubpZyISvxF6DVpPk</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Dong, Xin</creator><creator>Li, XiaoNa</creator><creator>Li, Na</creator><creator>Zhao, HongMei</creator><creator>GuLa, A</creator><creator>Zhang, Xuan</creator><creator>Zhang, Ping</creator><creator>Bao, BaoQuan</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0229-3372</orcidid></search><sort><creationdate>201911</creationdate><title>A target‐group‐change couple with mass defect filtering strategy to identify the metabolites of “Dogel ebs” in rats plasma, urine and bile</title><author>Dong, Xin ; Li, XiaoNa ; Li, Na ; Zhao, HongMei ; GuLa, A ; Zhang, Xuan ; Zhang, Ping ; Bao, BaoQuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3209-9c4fb267fbf11976fe0b801a03a4634180c1025caaf034306a909acd61d874ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acetylation</topic><topic>Alkaloids</topic><topic>Animals</topic><topic>Bile - chemistry</topic><topic>Bile - metabolism</topic><topic>Biocompatibility</topic><topic>Decarboxylation</topic><topic>Dogel ebs</topic><topic>Drugs, Chinese Herbal - analysis</topic><topic>Drugs, Chinese Herbal - metabolism</topic><topic>Filtration</topic><topic>Flavonoids</topic><topic>Herbal medicine</topic><topic>In vivo methods and tests</topic><topic>Liquid chromatography</topic><topic>Male</topic><topic>mass defect filtering</topic><topic>Mass spectrometry</topic><topic>Medicine, Chinese Traditional</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Moisture content</topic><topic>Molecular Conformation</topic><topic>Molecular Weight</topic><topic>Negative ions</topic><topic>Organic chemistry</topic><topic>Oxidation</topic><topic>Quadrupoles</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>target‐group‐change</topic><topic>Toxicity</topic><topic>traditional Chinese medicine</topic><topic>Urine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Xin</creatorcontrib><creatorcontrib>Li, XiaoNa</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><creatorcontrib>Zhao, HongMei</creatorcontrib><creatorcontrib>GuLa, A</creatorcontrib><creatorcontrib>Zhang, Xuan</creatorcontrib><creatorcontrib>Zhang, Ping</creatorcontrib><creatorcontrib>Bao, BaoQuan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of separation science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Xin</au><au>Li, XiaoNa</au><au>Li, Na</au><au>Zhao, HongMei</au><au>GuLa, A</au><au>Zhang, Xuan</au><au>Zhang, Ping</au><au>Bao, BaoQuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A target‐group‐change couple with mass defect filtering strategy to identify the metabolites of “Dogel ebs” in rats plasma, urine and bile</atitle><jtitle>Journal of separation science</jtitle><addtitle>J Sep Sci</addtitle><date>2019-11</date><risdate>2019</risdate><volume>42</volume><issue>21</issue><spage>3382</spage><epage>3389</epage><pages>3382-3389</pages><issn>1615-9306</issn><eissn>1615-9314</eissn><abstract>“Dogel ebs” was known as Sophora flavescens Ait., a classical traditional Chinese Mongolian herbal medicine, which had the effects on damp‐heat dysentery, scrofula, and syndrome of accumulated dampness toxicity. Although the chemical constituents have been clarified by our previous studies, the metabolic transformation of “Dogel ebs” in vivo was still unclear. To explore the mechanism of “Dogel ebs,” the metabolites in plasma, bile, and urine samples were investigated. A fast positive and negative ion switching technology was used for the simultaneous determination of flavonoids and alkaloids in “Dogel ebs” in a single run. And a target‐group‐change coupled with mass defect filtering strategy was utilized to analyze the collected data. 89 parent compounds and 82 metabolites were characterized by high‐performance liquid chromatography with quadrupole exactive Orbitrap mass spectrometry. Both phase I and phase II metabolites were observed and the metabolic pathways involved in oxidation, demethylation, acetylation, and glucuronidation. 69 metabolites of “Dogel ebs,” including three hydroxyls bonding xanthohumol, formononetin‐7‐O‐glucuronide, 2′‐hydroxyl‐isoxanthohumol decarboxylation metabolite, oxysophocarpine dehydrogen, 9α‐hydroxysophoramine‐O‐glucuronide, etc. were reported for the first time.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31503388</pmid><doi>10.1002/jssc.201900466</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0229-3372</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-9306 |
ispartof | Journal of separation science, 2019-11, Vol.42 (21), p.3382-3389 |
issn | 1615-9306 1615-9314 |
language | eng |
recordid | cdi_proquest_miscellaneous_2288011872 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Acetylation Alkaloids Animals Bile - chemistry Bile - metabolism Biocompatibility Decarboxylation Dogel ebs Drugs, Chinese Herbal - analysis Drugs, Chinese Herbal - metabolism Filtration Flavonoids Herbal medicine In vivo methods and tests Liquid chromatography Male mass defect filtering Mass spectrometry Medicine, Chinese Traditional Metabolism Metabolites Moisture content Molecular Conformation Molecular Weight Negative ions Organic chemistry Oxidation Quadrupoles Rats Rats, Wistar target‐group‐change Toxicity traditional Chinese medicine Urine |
title | A target‐group‐change couple with mass defect filtering strategy to identify the metabolites of “Dogel ebs” in rats plasma, urine and bile |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A10%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20target%E2%80%90group%E2%80%90change%20couple%20with%20mass%20defect%20filtering%20strategy%20to%20identify%20the%20metabolites%20of%20%E2%80%9CDogel%20ebs%E2%80%9D%20in%20rats%20plasma,%20urine%20and%20bile&rft.jtitle=Journal%20of%20separation%20science&rft.au=Dong,%20Xin&rft.date=2019-11&rft.volume=42&rft.issue=21&rft.spage=3382&rft.epage=3389&rft.pages=3382-3389&rft.issn=1615-9306&rft.eissn=1615-9314&rft_id=info:doi/10.1002/jssc.201900466&rft_dat=%3Cproquest_cross%3E2312140286%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2312140286&rft_id=info:pmid/31503388&rfr_iscdi=true |