A target‐group‐change couple with mass defect filtering strategy to identify the metabolites of “Dogel ebs” in rats plasma, urine and bile

“Dogel ebs” was known as Sophora flavescens Ait., a classical traditional Chinese Mongolian herbal medicine, which had the effects on damp‐heat dysentery, scrofula, and syndrome of accumulated dampness toxicity. Although the chemical constituents have been clarified by our previous studies, the meta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of separation science 2019-11, Vol.42 (21), p.3382-3389
Hauptverfasser: Dong, Xin, Li, XiaoNa, Li, Na, Zhao, HongMei, GuLa, A, Zhang, Xuan, Zhang, Ping, Bao, BaoQuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3389
container_issue 21
container_start_page 3382
container_title Journal of separation science
container_volume 42
creator Dong, Xin
Li, XiaoNa
Li, Na
Zhao, HongMei
GuLa, A
Zhang, Xuan
Zhang, Ping
Bao, BaoQuan
description “Dogel ebs” was known as Sophora flavescens Ait., a classical traditional Chinese Mongolian herbal medicine, which had the effects on damp‐heat dysentery, scrofula, and syndrome of accumulated dampness toxicity. Although the chemical constituents have been clarified by our previous studies, the metabolic transformation of “Dogel ebs” in vivo was still unclear. To explore the mechanism of “Dogel ebs,” the metabolites in plasma, bile, and urine samples were investigated. A fast positive and negative ion switching technology was used for the simultaneous determination of flavonoids and alkaloids in “Dogel ebs” in a single run. And a target‐group‐change coupled with mass defect filtering strategy was utilized to analyze the collected data. 89 parent compounds and 82 metabolites were characterized by high‐performance liquid chromatography with quadrupole exactive Orbitrap mass spectrometry. Both phase I and phase II metabolites were observed and the metabolic pathways involved in oxidation, demethylation, acetylation, and glucuronidation. 69 metabolites of “Dogel ebs,” including three hydroxyls bonding xanthohumol, formononetin‐7‐O‐glucuronide, 2′‐hydroxyl‐isoxanthohumol decarboxylation metabolite, oxysophocarpine dehydrogen, 9α‐hydroxysophoramine‐O‐glucuronide, etc. were reported for the first time.
doi_str_mv 10.1002/jssc.201900466
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2288011872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2312140286</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3209-9c4fb267fbf11976fe0b801a03a4634180c1025caaf034306a909acd61d874ae3</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhiMEoqVw5YhG4sKhu4ztrJMcq4UCVSUOhXPkOOOsV06y2I6qve0joJ7Ly-2T4GrbPXDhNDPSN59G82fZW4Zzhsg_rkPQc46sQsylfJadMskWs0qw_PmxR3mSvQphjciKssKX2YlgCxSiLE-zuwuIyncU97vfnR-nTap6pYaOQKfJEdzauIJehQAtGdIRjHWRvB06CNGrSN0W4gi2pSFak_oVQU9RNaOzkQKMBva7-09jRw6oCfvdH7ADpMUAG6dCr85hSjYCNbTQWEevsxdGuUBvHutZ9vPy84_l19n19y_flhfXMy04VrNK56bhsjCNYawqpCFsSmQKhcqlyFmJmiFfaKUMijw9QVVYKd1K1pZFrkicZR8O3o0ff00UYt3boMk5NdA4hZrzMvlYWfCEvv8HXY-TH9J1NReMsxx5KRM1P1DajyF4MvXG2175bc2wfkirfkirPqaVFt49aqemp_aIP8WTgPwA3Ka_bP-jq69ubpZyISvxF6DVpPk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312140286</pqid></control><display><type>article</type><title>A target‐group‐change couple with mass defect filtering strategy to identify the metabolites of “Dogel ebs” in rats plasma, urine and bile</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Dong, Xin ; Li, XiaoNa ; Li, Na ; Zhao, HongMei ; GuLa, A ; Zhang, Xuan ; Zhang, Ping ; Bao, BaoQuan</creator><creatorcontrib>Dong, Xin ; Li, XiaoNa ; Li, Na ; Zhao, HongMei ; GuLa, A ; Zhang, Xuan ; Zhang, Ping ; Bao, BaoQuan</creatorcontrib><description>“Dogel ebs” was known as Sophora flavescens Ait., a classical traditional Chinese Mongolian herbal medicine, which had the effects on damp‐heat dysentery, scrofula, and syndrome of accumulated dampness toxicity. Although the chemical constituents have been clarified by our previous studies, the metabolic transformation of “Dogel ebs” in vivo was still unclear. To explore the mechanism of “Dogel ebs,” the metabolites in plasma, bile, and urine samples were investigated. A fast positive and negative ion switching technology was used for the simultaneous determination of flavonoids and alkaloids in “Dogel ebs” in a single run. And a target‐group‐change coupled with mass defect filtering strategy was utilized to analyze the collected data. 89 parent compounds and 82 metabolites were characterized by high‐performance liquid chromatography with quadrupole exactive Orbitrap mass spectrometry. Both phase I and phase II metabolites were observed and the metabolic pathways involved in oxidation, demethylation, acetylation, and glucuronidation. 69 metabolites of “Dogel ebs,” including three hydroxyls bonding xanthohumol, formononetin‐7‐O‐glucuronide, 2′‐hydroxyl‐isoxanthohumol decarboxylation metabolite, oxysophocarpine dehydrogen, 9α‐hydroxysophoramine‐O‐glucuronide, etc. were reported for the first time.</description><identifier>ISSN: 1615-9306</identifier><identifier>EISSN: 1615-9314</identifier><identifier>DOI: 10.1002/jssc.201900466</identifier><identifier>PMID: 31503388</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Acetylation ; Alkaloids ; Animals ; Bile - chemistry ; Bile - metabolism ; Biocompatibility ; Decarboxylation ; Dogel ebs ; Drugs, Chinese Herbal - analysis ; Drugs, Chinese Herbal - metabolism ; Filtration ; Flavonoids ; Herbal medicine ; In vivo methods and tests ; Liquid chromatography ; Male ; mass defect filtering ; Mass spectrometry ; Medicine, Chinese Traditional ; Metabolism ; Metabolites ; Moisture content ; Molecular Conformation ; Molecular Weight ; Negative ions ; Organic chemistry ; Oxidation ; Quadrupoles ; Rats ; Rats, Wistar ; target‐group‐change ; Toxicity ; traditional Chinese medicine ; Urine</subject><ispartof>Journal of separation science, 2019-11, Vol.42 (21), p.3382-3389</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3209-9c4fb267fbf11976fe0b801a03a4634180c1025caaf034306a909acd61d874ae3</citedby><cites>FETCH-LOGICAL-c3209-9c4fb267fbf11976fe0b801a03a4634180c1025caaf034306a909acd61d874ae3</cites><orcidid>0000-0003-0229-3372</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjssc.201900466$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjssc.201900466$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31503388$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dong, Xin</creatorcontrib><creatorcontrib>Li, XiaoNa</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><creatorcontrib>Zhao, HongMei</creatorcontrib><creatorcontrib>GuLa, A</creatorcontrib><creatorcontrib>Zhang, Xuan</creatorcontrib><creatorcontrib>Zhang, Ping</creatorcontrib><creatorcontrib>Bao, BaoQuan</creatorcontrib><title>A target‐group‐change couple with mass defect filtering strategy to identify the metabolites of “Dogel ebs” in rats plasma, urine and bile</title><title>Journal of separation science</title><addtitle>J Sep Sci</addtitle><description>“Dogel ebs” was known as Sophora flavescens Ait., a classical traditional Chinese Mongolian herbal medicine, which had the effects on damp‐heat dysentery, scrofula, and syndrome of accumulated dampness toxicity. Although the chemical constituents have been clarified by our previous studies, the metabolic transformation of “Dogel ebs” in vivo was still unclear. To explore the mechanism of “Dogel ebs,” the metabolites in plasma, bile, and urine samples were investigated. A fast positive and negative ion switching technology was used for the simultaneous determination of flavonoids and alkaloids in “Dogel ebs” in a single run. And a target‐group‐change coupled with mass defect filtering strategy was utilized to analyze the collected data. 89 parent compounds and 82 metabolites were characterized by high‐performance liquid chromatography with quadrupole exactive Orbitrap mass spectrometry. Both phase I and phase II metabolites were observed and the metabolic pathways involved in oxidation, demethylation, acetylation, and glucuronidation. 69 metabolites of “Dogel ebs,” including three hydroxyls bonding xanthohumol, formononetin‐7‐O‐glucuronide, 2′‐hydroxyl‐isoxanthohumol decarboxylation metabolite, oxysophocarpine dehydrogen, 9α‐hydroxysophoramine‐O‐glucuronide, etc. were reported for the first time.</description><subject>Acetylation</subject><subject>Alkaloids</subject><subject>Animals</subject><subject>Bile - chemistry</subject><subject>Bile - metabolism</subject><subject>Biocompatibility</subject><subject>Decarboxylation</subject><subject>Dogel ebs</subject><subject>Drugs, Chinese Herbal - analysis</subject><subject>Drugs, Chinese Herbal - metabolism</subject><subject>Filtration</subject><subject>Flavonoids</subject><subject>Herbal medicine</subject><subject>In vivo methods and tests</subject><subject>Liquid chromatography</subject><subject>Male</subject><subject>mass defect filtering</subject><subject>Mass spectrometry</subject><subject>Medicine, Chinese Traditional</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Moisture content</subject><subject>Molecular Conformation</subject><subject>Molecular Weight</subject><subject>Negative ions</subject><subject>Organic chemistry</subject><subject>Oxidation</subject><subject>Quadrupoles</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>target‐group‐change</subject><subject>Toxicity</subject><subject>traditional Chinese medicine</subject><subject>Urine</subject><issn>1615-9306</issn><issn>1615-9314</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFu1DAQhiMEoqVw5YhG4sKhu4ztrJMcq4UCVSUOhXPkOOOsV06y2I6qve0joJ7Ly-2T4GrbPXDhNDPSN59G82fZW4Zzhsg_rkPQc46sQsylfJadMskWs0qw_PmxR3mSvQphjciKssKX2YlgCxSiLE-zuwuIyncU97vfnR-nTap6pYaOQKfJEdzauIJehQAtGdIRjHWRvB06CNGrSN0W4gi2pSFak_oVQU9RNaOzkQKMBva7-09jRw6oCfvdH7ADpMUAG6dCr85hSjYCNbTQWEevsxdGuUBvHutZ9vPy84_l19n19y_flhfXMy04VrNK56bhsjCNYawqpCFsSmQKhcqlyFmJmiFfaKUMijw9QVVYKd1K1pZFrkicZR8O3o0ff00UYt3boMk5NdA4hZrzMvlYWfCEvv8HXY-TH9J1NReMsxx5KRM1P1DajyF4MvXG2175bc2wfkirfkirPqaVFt49aqemp_aIP8WTgPwA3Ka_bP-jq69ubpZyISvxF6DVpPk</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Dong, Xin</creator><creator>Li, XiaoNa</creator><creator>Li, Na</creator><creator>Zhao, HongMei</creator><creator>GuLa, A</creator><creator>Zhang, Xuan</creator><creator>Zhang, Ping</creator><creator>Bao, BaoQuan</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0229-3372</orcidid></search><sort><creationdate>201911</creationdate><title>A target‐group‐change couple with mass defect filtering strategy to identify the metabolites of “Dogel ebs” in rats plasma, urine and bile</title><author>Dong, Xin ; Li, XiaoNa ; Li, Na ; Zhao, HongMei ; GuLa, A ; Zhang, Xuan ; Zhang, Ping ; Bao, BaoQuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3209-9c4fb267fbf11976fe0b801a03a4634180c1025caaf034306a909acd61d874ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acetylation</topic><topic>Alkaloids</topic><topic>Animals</topic><topic>Bile - chemistry</topic><topic>Bile - metabolism</topic><topic>Biocompatibility</topic><topic>Decarboxylation</topic><topic>Dogel ebs</topic><topic>Drugs, Chinese Herbal - analysis</topic><topic>Drugs, Chinese Herbal - metabolism</topic><topic>Filtration</topic><topic>Flavonoids</topic><topic>Herbal medicine</topic><topic>In vivo methods and tests</topic><topic>Liquid chromatography</topic><topic>Male</topic><topic>mass defect filtering</topic><topic>Mass spectrometry</topic><topic>Medicine, Chinese Traditional</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Moisture content</topic><topic>Molecular Conformation</topic><topic>Molecular Weight</topic><topic>Negative ions</topic><topic>Organic chemistry</topic><topic>Oxidation</topic><topic>Quadrupoles</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>target‐group‐change</topic><topic>Toxicity</topic><topic>traditional Chinese medicine</topic><topic>Urine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Xin</creatorcontrib><creatorcontrib>Li, XiaoNa</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><creatorcontrib>Zhao, HongMei</creatorcontrib><creatorcontrib>GuLa, A</creatorcontrib><creatorcontrib>Zhang, Xuan</creatorcontrib><creatorcontrib>Zhang, Ping</creatorcontrib><creatorcontrib>Bao, BaoQuan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of separation science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Xin</au><au>Li, XiaoNa</au><au>Li, Na</au><au>Zhao, HongMei</au><au>GuLa, A</au><au>Zhang, Xuan</au><au>Zhang, Ping</au><au>Bao, BaoQuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A target‐group‐change couple with mass defect filtering strategy to identify the metabolites of “Dogel ebs” in rats plasma, urine and bile</atitle><jtitle>Journal of separation science</jtitle><addtitle>J Sep Sci</addtitle><date>2019-11</date><risdate>2019</risdate><volume>42</volume><issue>21</issue><spage>3382</spage><epage>3389</epage><pages>3382-3389</pages><issn>1615-9306</issn><eissn>1615-9314</eissn><abstract>“Dogel ebs” was known as Sophora flavescens Ait., a classical traditional Chinese Mongolian herbal medicine, which had the effects on damp‐heat dysentery, scrofula, and syndrome of accumulated dampness toxicity. Although the chemical constituents have been clarified by our previous studies, the metabolic transformation of “Dogel ebs” in vivo was still unclear. To explore the mechanism of “Dogel ebs,” the metabolites in plasma, bile, and urine samples were investigated. A fast positive and negative ion switching technology was used for the simultaneous determination of flavonoids and alkaloids in “Dogel ebs” in a single run. And a target‐group‐change coupled with mass defect filtering strategy was utilized to analyze the collected data. 89 parent compounds and 82 metabolites were characterized by high‐performance liquid chromatography with quadrupole exactive Orbitrap mass spectrometry. Both phase I and phase II metabolites were observed and the metabolic pathways involved in oxidation, demethylation, acetylation, and glucuronidation. 69 metabolites of “Dogel ebs,” including three hydroxyls bonding xanthohumol, formononetin‐7‐O‐glucuronide, 2′‐hydroxyl‐isoxanthohumol decarboxylation metabolite, oxysophocarpine dehydrogen, 9α‐hydroxysophoramine‐O‐glucuronide, etc. were reported for the first time.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31503388</pmid><doi>10.1002/jssc.201900466</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0229-3372</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1615-9306
ispartof Journal of separation science, 2019-11, Vol.42 (21), p.3382-3389
issn 1615-9306
1615-9314
language eng
recordid cdi_proquest_miscellaneous_2288011872
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Acetylation
Alkaloids
Animals
Bile - chemistry
Bile - metabolism
Biocompatibility
Decarboxylation
Dogel ebs
Drugs, Chinese Herbal - analysis
Drugs, Chinese Herbal - metabolism
Filtration
Flavonoids
Herbal medicine
In vivo methods and tests
Liquid chromatography
Male
mass defect filtering
Mass spectrometry
Medicine, Chinese Traditional
Metabolism
Metabolites
Moisture content
Molecular Conformation
Molecular Weight
Negative ions
Organic chemistry
Oxidation
Quadrupoles
Rats
Rats, Wistar
target‐group‐change
Toxicity
traditional Chinese medicine
Urine
title A target‐group‐change couple with mass defect filtering strategy to identify the metabolites of “Dogel ebs” in rats plasma, urine and bile
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A10%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20target%E2%80%90group%E2%80%90change%20couple%20with%20mass%20defect%20filtering%20strategy%20to%20identify%20the%20metabolites%20of%20%E2%80%9CDogel%20ebs%E2%80%9D%20in%20rats%20plasma,%20urine%20and%20bile&rft.jtitle=Journal%20of%20separation%20science&rft.au=Dong,%20Xin&rft.date=2019-11&rft.volume=42&rft.issue=21&rft.spage=3382&rft.epage=3389&rft.pages=3382-3389&rft.issn=1615-9306&rft.eissn=1615-9314&rft_id=info:doi/10.1002/jssc.201900466&rft_dat=%3Cproquest_cross%3E2312140286%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2312140286&rft_id=info:pmid/31503388&rfr_iscdi=true