FRET-assisted photoactivation of flavoproteins for in vivo two-photon optogenetics

Optical dimerizers have been developed to untangle signaling pathways, but they are of limited use in vivo, partly due to their inefficient activation under two-photon (2P) excitation. To overcome this problem, we developed Förster resonance energy transfer (FRET)-assisted photoactivation, or FRAPA....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature methods 2019-10, Vol.16 (10), p.1029-1036
Hauptverfasser: Kinjo, Tomoaki, Terai, Kenta, Horita, Shoichiro, Nomura, Norimichi, Sumiyama, Kenta, Togashi, Kaori, Iwata, So, Matsuda, Michiyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1036
container_issue 10
container_start_page 1029
container_title Nature methods
container_volume 16
creator Kinjo, Tomoaki
Terai, Kenta
Horita, Shoichiro
Nomura, Norimichi
Sumiyama, Kenta
Togashi, Kaori
Iwata, So
Matsuda, Michiyuki
description Optical dimerizers have been developed to untangle signaling pathways, but they are of limited use in vivo, partly due to their inefficient activation under two-photon (2P) excitation. To overcome this problem, we developed Förster resonance energy transfer (FRET)-assisted photoactivation, or FRAPA. On 2P excitation, mTagBFP2 efficiently absorbs and transfers the energy to the chromophore of CRY2. Based on structure-guided engineering, a chimeric protein with 40% FRET efficiency was developed and named 2P-activatable CRY2, or 2paCRY2. 2paCRY2 was employed to develop a RAF1 activation system named 2paRAF. In three-dimensionally cultured cells expressing 2paRAF, extracellular signal-regulated kinase (ERK) was efficiently activated by 2P excitation at single-cell resolution. Photoactivation of ERK was also accomplished in the epidermal cells of 2paRAF-expressing mice. We further developed an mTFP1-fused LOV domain that exhibits efficient response to 2P excitation. Collectively, FRAPA will pave the way to single-cell optical control of signaling pathways in vivo. Fusion to fluorescent proteins enables efficient two-photon activation of blue-light-controlled optical dimerizers via FRET. FRET-assisted photoactivation was used to study extracellular signal-regulated kinase activation in 3D epithelial cysts, organoids and living mice.
doi_str_mv 10.1038/s41592-019-0541-5
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2288004503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A601046778</galeid><sourcerecordid>A601046778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c548t-3834ff8464f45f97e752f939bbf3a8bd142d20401ad6e0feac77a09f345545813</originalsourceid><addsrcrecordid>eNp1kd1LHDEUxYNU1K7-AX0pA33xJXrzNZN5FNFWEAqizyE7c7ONzCbbJLul_73Zrh9YWvKQkPs7h3M5hHxicMZA6PMsmeo5BdZTUJJRtUeOmJKadgzUh5c39OyQfMz5EUAIydUBORRMQR22R-Tu-u7qntqcfS44NqsfsUQ7FL-xxcfQRNe4yW7iKsWCPuTGxdT40Gz8JjblV6R_BJVblbjAgMUP-ZjsOztlPHm-Z-Th-ur-8hu9_f715vLilg41VqFCC-mclq10Urm-w05x14t-PnfC6vnIJB85SGB2bBEc2qHrLPROSKWk0kzMyOnOt4b7ucZczNLnAafJBozrbDjXGkCquvWMfPkLfYzrFGq6SvW6a7ng-o1a2AmNDy6WZIetqblogYFsu25Lnf2DqmfEpR9iQOfr_zsB2wmGFHNO6Mwq-aVNvw0Ds-3R7Ho0tUez7dGoqvn8HHg9X-L4qngprgJ8B-Q6CgtMbxv93_UJWoumGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2298762328</pqid></control><display><type>article</type><title>FRET-assisted photoactivation of flavoproteins for in vivo two-photon optogenetics</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Kinjo, Tomoaki ; Terai, Kenta ; Horita, Shoichiro ; Nomura, Norimichi ; Sumiyama, Kenta ; Togashi, Kaori ; Iwata, So ; Matsuda, Michiyuki</creator><creatorcontrib>Kinjo, Tomoaki ; Terai, Kenta ; Horita, Shoichiro ; Nomura, Norimichi ; Sumiyama, Kenta ; Togashi, Kaori ; Iwata, So ; Matsuda, Michiyuki</creatorcontrib><description>Optical dimerizers have been developed to untangle signaling pathways, but they are of limited use in vivo, partly due to their inefficient activation under two-photon (2P) excitation. To overcome this problem, we developed Förster resonance energy transfer (FRET)-assisted photoactivation, or FRAPA. On 2P excitation, mTagBFP2 efficiently absorbs and transfers the energy to the chromophore of CRY2. Based on structure-guided engineering, a chimeric protein with 40% FRET efficiency was developed and named 2P-activatable CRY2, or 2paCRY2. 2paCRY2 was employed to develop a RAF1 activation system named 2paRAF. In three-dimensionally cultured cells expressing 2paRAF, extracellular signal-regulated kinase (ERK) was efficiently activated by 2P excitation at single-cell resolution. Photoactivation of ERK was also accomplished in the epidermal cells of 2paRAF-expressing mice. We further developed an mTFP1-fused LOV domain that exhibits efficient response to 2P excitation. Collectively, FRAPA will pave the way to single-cell optical control of signaling pathways in vivo. Fusion to fluorescent proteins enables efficient two-photon activation of blue-light-controlled optical dimerizers via FRET. FRET-assisted photoactivation was used to study extracellular signal-regulated kinase activation in 3D epithelial cysts, organoids and living mice.</description><identifier>ISSN: 1548-7091</identifier><identifier>EISSN: 1548-7105</identifier><identifier>DOI: 10.1038/s41592-019-0541-5</identifier><identifier>PMID: 31501546</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/1647/2253 ; 631/1647/328/2057 ; 631/61/338 ; Activation ; Analysis ; Animals ; Bioinformatics ; Biological Microscopy ; Biological Techniques ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Chromophores ; Energy transfer ; Energy transformation ; Enzyme Activation ; Excitation ; Extracellular signal-regulated kinase ; Extracellular Signal-Regulated MAP Kinases - metabolism ; Flavoproteins ; Flavoproteins - metabolism ; Fluorescence resonance energy transfer ; Fluorescence Resonance Energy Transfer - methods ; Genetics ; Information processing ; Kinases ; Life Sciences ; Methods ; Mice ; Optical communication ; Optical control ; Optics ; Optogenetics ; Photoactivation ; Photons ; Protein engineering ; Protein-protein interactions ; Proteomics ; Radioactivation analysis ; Signal transduction ; Signaling</subject><ispartof>Nature methods, 2019-10, Vol.16 (10), p.1029-1036</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2019</rights><rights>COPYRIGHT 2019 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Oct 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c548t-3834ff8464f45f97e752f939bbf3a8bd142d20401ad6e0feac77a09f345545813</citedby><cites>FETCH-LOGICAL-c548t-3834ff8464f45f97e752f939bbf3a8bd142d20401ad6e0feac77a09f345545813</cites><orcidid>0000-0001-8785-5439 ; 0000-0002-6330-2239 ; 0000-0003-1735-2937 ; 0000-0001-7638-3720 ; 0000-0002-5876-9969</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31501546$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kinjo, Tomoaki</creatorcontrib><creatorcontrib>Terai, Kenta</creatorcontrib><creatorcontrib>Horita, Shoichiro</creatorcontrib><creatorcontrib>Nomura, Norimichi</creatorcontrib><creatorcontrib>Sumiyama, Kenta</creatorcontrib><creatorcontrib>Togashi, Kaori</creatorcontrib><creatorcontrib>Iwata, So</creatorcontrib><creatorcontrib>Matsuda, Michiyuki</creatorcontrib><title>FRET-assisted photoactivation of flavoproteins for in vivo two-photon optogenetics</title><title>Nature methods</title><addtitle>Nat Methods</addtitle><addtitle>Nat Methods</addtitle><description>Optical dimerizers have been developed to untangle signaling pathways, but they are of limited use in vivo, partly due to their inefficient activation under two-photon (2P) excitation. To overcome this problem, we developed Förster resonance energy transfer (FRET)-assisted photoactivation, or FRAPA. On 2P excitation, mTagBFP2 efficiently absorbs and transfers the energy to the chromophore of CRY2. Based on structure-guided engineering, a chimeric protein with 40% FRET efficiency was developed and named 2P-activatable CRY2, or 2paCRY2. 2paCRY2 was employed to develop a RAF1 activation system named 2paRAF. In three-dimensionally cultured cells expressing 2paRAF, extracellular signal-regulated kinase (ERK) was efficiently activated by 2P excitation at single-cell resolution. Photoactivation of ERK was also accomplished in the epidermal cells of 2paRAF-expressing mice. We further developed an mTFP1-fused LOV domain that exhibits efficient response to 2P excitation. Collectively, FRAPA will pave the way to single-cell optical control of signaling pathways in vivo. Fusion to fluorescent proteins enables efficient two-photon activation of blue-light-controlled optical dimerizers via FRET. FRET-assisted photoactivation was used to study extracellular signal-regulated kinase activation in 3D epithelial cysts, organoids and living mice.</description><subject>631/1647/2253</subject><subject>631/1647/328/2057</subject><subject>631/61/338</subject><subject>Activation</subject><subject>Analysis</subject><subject>Animals</subject><subject>Bioinformatics</subject><subject>Biological Microscopy</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Chromophores</subject><subject>Energy transfer</subject><subject>Energy transformation</subject><subject>Enzyme Activation</subject><subject>Excitation</subject><subject>Extracellular signal-regulated kinase</subject><subject>Extracellular Signal-Regulated MAP Kinases - metabolism</subject><subject>Flavoproteins</subject><subject>Flavoproteins - metabolism</subject><subject>Fluorescence resonance energy transfer</subject><subject>Fluorescence Resonance Energy Transfer - methods</subject><subject>Genetics</subject><subject>Information processing</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>Methods</subject><subject>Mice</subject><subject>Optical communication</subject><subject>Optical control</subject><subject>Optics</subject><subject>Optogenetics</subject><subject>Photoactivation</subject><subject>Photons</subject><subject>Protein engineering</subject><subject>Protein-protein interactions</subject><subject>Proteomics</subject><subject>Radioactivation analysis</subject><subject>Signal transduction</subject><subject>Signaling</subject><issn>1548-7091</issn><issn>1548-7105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kd1LHDEUxYNU1K7-AX0pA33xJXrzNZN5FNFWEAqizyE7c7ONzCbbJLul_73Zrh9YWvKQkPs7h3M5hHxicMZA6PMsmeo5BdZTUJJRtUeOmJKadgzUh5c39OyQfMz5EUAIydUBORRMQR22R-Tu-u7qntqcfS44NqsfsUQ7FL-xxcfQRNe4yW7iKsWCPuTGxdT40Gz8JjblV6R_BJVblbjAgMUP-ZjsOztlPHm-Z-Th-ur-8hu9_f715vLilg41VqFCC-mclq10Urm-w05x14t-PnfC6vnIJB85SGB2bBEc2qHrLPROSKWk0kzMyOnOt4b7ucZczNLnAafJBozrbDjXGkCquvWMfPkLfYzrFGq6SvW6a7ng-o1a2AmNDy6WZIetqblogYFsu25Lnf2DqmfEpR9iQOfr_zsB2wmGFHNO6Mwq-aVNvw0Ds-3R7Ho0tUez7dGoqvn8HHg9X-L4qngprgJ8B-Q6CgtMbxv93_UJWoumGA</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Kinjo, Tomoaki</creator><creator>Terai, Kenta</creator><creator>Horita, Shoichiro</creator><creator>Nomura, Norimichi</creator><creator>Sumiyama, Kenta</creator><creator>Togashi, Kaori</creator><creator>Iwata, So</creator><creator>Matsuda, Michiyuki</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7SS</scope><scope>7TK</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8785-5439</orcidid><orcidid>https://orcid.org/0000-0002-6330-2239</orcidid><orcidid>https://orcid.org/0000-0003-1735-2937</orcidid><orcidid>https://orcid.org/0000-0001-7638-3720</orcidid><orcidid>https://orcid.org/0000-0002-5876-9969</orcidid></search><sort><creationdate>20191001</creationdate><title>FRET-assisted photoactivation of flavoproteins for in vivo two-photon optogenetics</title><author>Kinjo, Tomoaki ; Terai, Kenta ; Horita, Shoichiro ; Nomura, Norimichi ; Sumiyama, Kenta ; Togashi, Kaori ; Iwata, So ; Matsuda, Michiyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c548t-3834ff8464f45f97e752f939bbf3a8bd142d20401ad6e0feac77a09f345545813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/1647/2253</topic><topic>631/1647/328/2057</topic><topic>631/61/338</topic><topic>Activation</topic><topic>Analysis</topic><topic>Animals</topic><topic>Bioinformatics</topic><topic>Biological Microscopy</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Chromophores</topic><topic>Energy transfer</topic><topic>Energy transformation</topic><topic>Enzyme Activation</topic><topic>Excitation</topic><topic>Extracellular signal-regulated kinase</topic><topic>Extracellular Signal-Regulated MAP Kinases - metabolism</topic><topic>Flavoproteins</topic><topic>Flavoproteins - metabolism</topic><topic>Fluorescence resonance energy transfer</topic><topic>Fluorescence Resonance Energy Transfer - methods</topic><topic>Genetics</topic><topic>Information processing</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>Methods</topic><topic>Mice</topic><topic>Optical communication</topic><topic>Optical control</topic><topic>Optics</topic><topic>Optogenetics</topic><topic>Photoactivation</topic><topic>Photons</topic><topic>Protein engineering</topic><topic>Protein-protein interactions</topic><topic>Proteomics</topic><topic>Radioactivation analysis</topic><topic>Signal transduction</topic><topic>Signaling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kinjo, Tomoaki</creatorcontrib><creatorcontrib>Terai, Kenta</creatorcontrib><creatorcontrib>Horita, Shoichiro</creatorcontrib><creatorcontrib>Nomura, Norimichi</creatorcontrib><creatorcontrib>Sumiyama, Kenta</creatorcontrib><creatorcontrib>Togashi, Kaori</creatorcontrib><creatorcontrib>Iwata, So</creatorcontrib><creatorcontrib>Matsuda, Michiyuki</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kinjo, Tomoaki</au><au>Terai, Kenta</au><au>Horita, Shoichiro</au><au>Nomura, Norimichi</au><au>Sumiyama, Kenta</au><au>Togashi, Kaori</au><au>Iwata, So</au><au>Matsuda, Michiyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FRET-assisted photoactivation of flavoproteins for in vivo two-photon optogenetics</atitle><jtitle>Nature methods</jtitle><stitle>Nat Methods</stitle><addtitle>Nat Methods</addtitle><date>2019-10-01</date><risdate>2019</risdate><volume>16</volume><issue>10</issue><spage>1029</spage><epage>1036</epage><pages>1029-1036</pages><issn>1548-7091</issn><eissn>1548-7105</eissn><abstract>Optical dimerizers have been developed to untangle signaling pathways, but they are of limited use in vivo, partly due to their inefficient activation under two-photon (2P) excitation. To overcome this problem, we developed Förster resonance energy transfer (FRET)-assisted photoactivation, or FRAPA. On 2P excitation, mTagBFP2 efficiently absorbs and transfers the energy to the chromophore of CRY2. Based on structure-guided engineering, a chimeric protein with 40% FRET efficiency was developed and named 2P-activatable CRY2, or 2paCRY2. 2paCRY2 was employed to develop a RAF1 activation system named 2paRAF. In three-dimensionally cultured cells expressing 2paRAF, extracellular signal-regulated kinase (ERK) was efficiently activated by 2P excitation at single-cell resolution. Photoactivation of ERK was also accomplished in the epidermal cells of 2paRAF-expressing mice. We further developed an mTFP1-fused LOV domain that exhibits efficient response to 2P excitation. Collectively, FRAPA will pave the way to single-cell optical control of signaling pathways in vivo. Fusion to fluorescent proteins enables efficient two-photon activation of blue-light-controlled optical dimerizers via FRET. FRET-assisted photoactivation was used to study extracellular signal-regulated kinase activation in 3D epithelial cysts, organoids and living mice.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>31501546</pmid><doi>10.1038/s41592-019-0541-5</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8785-5439</orcidid><orcidid>https://orcid.org/0000-0002-6330-2239</orcidid><orcidid>https://orcid.org/0000-0003-1735-2937</orcidid><orcidid>https://orcid.org/0000-0001-7638-3720</orcidid><orcidid>https://orcid.org/0000-0002-5876-9969</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1548-7091
ispartof Nature methods, 2019-10, Vol.16 (10), p.1029-1036
issn 1548-7091
1548-7105
language eng
recordid cdi_proquest_miscellaneous_2288004503
source MEDLINE; Nature; Alma/SFX Local Collection
subjects 631/1647/2253
631/1647/328/2057
631/61/338
Activation
Analysis
Animals
Bioinformatics
Biological Microscopy
Biological Techniques
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Chromophores
Energy transfer
Energy transformation
Enzyme Activation
Excitation
Extracellular signal-regulated kinase
Extracellular Signal-Regulated MAP Kinases - metabolism
Flavoproteins
Flavoproteins - metabolism
Fluorescence resonance energy transfer
Fluorescence Resonance Energy Transfer - methods
Genetics
Information processing
Kinases
Life Sciences
Methods
Mice
Optical communication
Optical control
Optics
Optogenetics
Photoactivation
Photons
Protein engineering
Protein-protein interactions
Proteomics
Radioactivation analysis
Signal transduction
Signaling
title FRET-assisted photoactivation of flavoproteins for in vivo two-photon optogenetics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T18%3A08%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FRET-assisted%20photoactivation%20of%20flavoproteins%20for%20in%20vivo%20two-photon%20optogenetics&rft.jtitle=Nature%20methods&rft.au=Kinjo,%20Tomoaki&rft.date=2019-10-01&rft.volume=16&rft.issue=10&rft.spage=1029&rft.epage=1036&rft.pages=1029-1036&rft.issn=1548-7091&rft.eissn=1548-7105&rft_id=info:doi/10.1038/s41592-019-0541-5&rft_dat=%3Cgale_proqu%3EA601046778%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2298762328&rft_id=info:pmid/31501546&rft_galeid=A601046778&rfr_iscdi=true