FRET-assisted photoactivation of flavoproteins for in vivo two-photon optogenetics
Optical dimerizers have been developed to untangle signaling pathways, but they are of limited use in vivo, partly due to their inefficient activation under two-photon (2P) excitation. To overcome this problem, we developed Förster resonance energy transfer (FRET)-assisted photoactivation, or FRAPA....
Gespeichert in:
Veröffentlicht in: | Nature methods 2019-10, Vol.16 (10), p.1029-1036 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1036 |
---|---|
container_issue | 10 |
container_start_page | 1029 |
container_title | Nature methods |
container_volume | 16 |
creator | Kinjo, Tomoaki Terai, Kenta Horita, Shoichiro Nomura, Norimichi Sumiyama, Kenta Togashi, Kaori Iwata, So Matsuda, Michiyuki |
description | Optical dimerizers have been developed to untangle signaling pathways, but they are of limited use in vivo, partly due to their inefficient activation under two-photon (2P) excitation. To overcome this problem, we developed Förster resonance energy transfer (FRET)-assisted photoactivation, or FRAPA. On 2P excitation, mTagBFP2 efficiently absorbs and transfers the energy to the chromophore of CRY2. Based on structure-guided engineering, a chimeric protein with 40% FRET efficiency was developed and named 2P-activatable CRY2, or 2paCRY2. 2paCRY2 was employed to develop a RAF1 activation system named 2paRAF. In three-dimensionally cultured cells expressing 2paRAF, extracellular signal-regulated kinase (ERK) was efficiently activated by 2P excitation at single-cell resolution. Photoactivation of ERK was also accomplished in the epidermal cells of 2paRAF-expressing mice. We further developed an mTFP1-fused LOV domain that exhibits efficient response to 2P excitation. Collectively, FRAPA will pave the way to single-cell optical control of signaling pathways in vivo.
Fusion to fluorescent proteins enables efficient two-photon activation of blue-light-controlled optical dimerizers via FRET. FRET-assisted photoactivation was used to study extracellular signal-regulated kinase activation in 3D epithelial cysts, organoids and living mice. |
doi_str_mv | 10.1038/s41592-019-0541-5 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2288004503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A601046778</galeid><sourcerecordid>A601046778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c548t-3834ff8464f45f97e752f939bbf3a8bd142d20401ad6e0feac77a09f345545813</originalsourceid><addsrcrecordid>eNp1kd1LHDEUxYNU1K7-AX0pA33xJXrzNZN5FNFWEAqizyE7c7ONzCbbJLul_73Zrh9YWvKQkPs7h3M5hHxicMZA6PMsmeo5BdZTUJJRtUeOmJKadgzUh5c39OyQfMz5EUAIydUBORRMQR22R-Tu-u7qntqcfS44NqsfsUQ7FL-xxcfQRNe4yW7iKsWCPuTGxdT40Gz8JjblV6R_BJVblbjAgMUP-ZjsOztlPHm-Z-Th-ur-8hu9_f715vLilg41VqFCC-mclq10Urm-w05x14t-PnfC6vnIJB85SGB2bBEc2qHrLPROSKWk0kzMyOnOt4b7ucZczNLnAafJBozrbDjXGkCquvWMfPkLfYzrFGq6SvW6a7ng-o1a2AmNDy6WZIetqblogYFsu25Lnf2DqmfEpR9iQOfr_zsB2wmGFHNO6Mwq-aVNvw0Ds-3R7Ho0tUez7dGoqvn8HHg9X-L4qngprgJ8B-Q6CgtMbxv93_UJWoumGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2298762328</pqid></control><display><type>article</type><title>FRET-assisted photoactivation of flavoproteins for in vivo two-photon optogenetics</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Kinjo, Tomoaki ; Terai, Kenta ; Horita, Shoichiro ; Nomura, Norimichi ; Sumiyama, Kenta ; Togashi, Kaori ; Iwata, So ; Matsuda, Michiyuki</creator><creatorcontrib>Kinjo, Tomoaki ; Terai, Kenta ; Horita, Shoichiro ; Nomura, Norimichi ; Sumiyama, Kenta ; Togashi, Kaori ; Iwata, So ; Matsuda, Michiyuki</creatorcontrib><description>Optical dimerizers have been developed to untangle signaling pathways, but they are of limited use in vivo, partly due to their inefficient activation under two-photon (2P) excitation. To overcome this problem, we developed Förster resonance energy transfer (FRET)-assisted photoactivation, or FRAPA. On 2P excitation, mTagBFP2 efficiently absorbs and transfers the energy to the chromophore of CRY2. Based on structure-guided engineering, a chimeric protein with 40% FRET efficiency was developed and named 2P-activatable CRY2, or 2paCRY2. 2paCRY2 was employed to develop a RAF1 activation system named 2paRAF. In three-dimensionally cultured cells expressing 2paRAF, extracellular signal-regulated kinase (ERK) was efficiently activated by 2P excitation at single-cell resolution. Photoactivation of ERK was also accomplished in the epidermal cells of 2paRAF-expressing mice. We further developed an mTFP1-fused LOV domain that exhibits efficient response to 2P excitation. Collectively, FRAPA will pave the way to single-cell optical control of signaling pathways in vivo.
Fusion to fluorescent proteins enables efficient two-photon activation of blue-light-controlled optical dimerizers via FRET. FRET-assisted photoactivation was used to study extracellular signal-regulated kinase activation in 3D epithelial cysts, organoids and living mice.</description><identifier>ISSN: 1548-7091</identifier><identifier>EISSN: 1548-7105</identifier><identifier>DOI: 10.1038/s41592-019-0541-5</identifier><identifier>PMID: 31501546</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/1647/2253 ; 631/1647/328/2057 ; 631/61/338 ; Activation ; Analysis ; Animals ; Bioinformatics ; Biological Microscopy ; Biological Techniques ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Chromophores ; Energy transfer ; Energy transformation ; Enzyme Activation ; Excitation ; Extracellular signal-regulated kinase ; Extracellular Signal-Regulated MAP Kinases - metabolism ; Flavoproteins ; Flavoproteins - metabolism ; Fluorescence resonance energy transfer ; Fluorescence Resonance Energy Transfer - methods ; Genetics ; Information processing ; Kinases ; Life Sciences ; Methods ; Mice ; Optical communication ; Optical control ; Optics ; Optogenetics ; Photoactivation ; Photons ; Protein engineering ; Protein-protein interactions ; Proteomics ; Radioactivation analysis ; Signal transduction ; Signaling</subject><ispartof>Nature methods, 2019-10, Vol.16 (10), p.1029-1036</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2019</rights><rights>COPYRIGHT 2019 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Oct 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c548t-3834ff8464f45f97e752f939bbf3a8bd142d20401ad6e0feac77a09f345545813</citedby><cites>FETCH-LOGICAL-c548t-3834ff8464f45f97e752f939bbf3a8bd142d20401ad6e0feac77a09f345545813</cites><orcidid>0000-0001-8785-5439 ; 0000-0002-6330-2239 ; 0000-0003-1735-2937 ; 0000-0001-7638-3720 ; 0000-0002-5876-9969</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31501546$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kinjo, Tomoaki</creatorcontrib><creatorcontrib>Terai, Kenta</creatorcontrib><creatorcontrib>Horita, Shoichiro</creatorcontrib><creatorcontrib>Nomura, Norimichi</creatorcontrib><creatorcontrib>Sumiyama, Kenta</creatorcontrib><creatorcontrib>Togashi, Kaori</creatorcontrib><creatorcontrib>Iwata, So</creatorcontrib><creatorcontrib>Matsuda, Michiyuki</creatorcontrib><title>FRET-assisted photoactivation of flavoproteins for in vivo two-photon optogenetics</title><title>Nature methods</title><addtitle>Nat Methods</addtitle><addtitle>Nat Methods</addtitle><description>Optical dimerizers have been developed to untangle signaling pathways, but they are of limited use in vivo, partly due to their inefficient activation under two-photon (2P) excitation. To overcome this problem, we developed Förster resonance energy transfer (FRET)-assisted photoactivation, or FRAPA. On 2P excitation, mTagBFP2 efficiently absorbs and transfers the energy to the chromophore of CRY2. Based on structure-guided engineering, a chimeric protein with 40% FRET efficiency was developed and named 2P-activatable CRY2, or 2paCRY2. 2paCRY2 was employed to develop a RAF1 activation system named 2paRAF. In three-dimensionally cultured cells expressing 2paRAF, extracellular signal-regulated kinase (ERK) was efficiently activated by 2P excitation at single-cell resolution. Photoactivation of ERK was also accomplished in the epidermal cells of 2paRAF-expressing mice. We further developed an mTFP1-fused LOV domain that exhibits efficient response to 2P excitation. Collectively, FRAPA will pave the way to single-cell optical control of signaling pathways in vivo.
Fusion to fluorescent proteins enables efficient two-photon activation of blue-light-controlled optical dimerizers via FRET. FRET-assisted photoactivation was used to study extracellular signal-regulated kinase activation in 3D epithelial cysts, organoids and living mice.</description><subject>631/1647/2253</subject><subject>631/1647/328/2057</subject><subject>631/61/338</subject><subject>Activation</subject><subject>Analysis</subject><subject>Animals</subject><subject>Bioinformatics</subject><subject>Biological Microscopy</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Chromophores</subject><subject>Energy transfer</subject><subject>Energy transformation</subject><subject>Enzyme Activation</subject><subject>Excitation</subject><subject>Extracellular signal-regulated kinase</subject><subject>Extracellular Signal-Regulated MAP Kinases - metabolism</subject><subject>Flavoproteins</subject><subject>Flavoproteins - metabolism</subject><subject>Fluorescence resonance energy transfer</subject><subject>Fluorescence Resonance Energy Transfer - methods</subject><subject>Genetics</subject><subject>Information processing</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>Methods</subject><subject>Mice</subject><subject>Optical communication</subject><subject>Optical control</subject><subject>Optics</subject><subject>Optogenetics</subject><subject>Photoactivation</subject><subject>Photons</subject><subject>Protein engineering</subject><subject>Protein-protein interactions</subject><subject>Proteomics</subject><subject>Radioactivation analysis</subject><subject>Signal transduction</subject><subject>Signaling</subject><issn>1548-7091</issn><issn>1548-7105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kd1LHDEUxYNU1K7-AX0pA33xJXrzNZN5FNFWEAqizyE7c7ONzCbbJLul_73Zrh9YWvKQkPs7h3M5hHxicMZA6PMsmeo5BdZTUJJRtUeOmJKadgzUh5c39OyQfMz5EUAIydUBORRMQR22R-Tu-u7qntqcfS44NqsfsUQ7FL-xxcfQRNe4yW7iKsWCPuTGxdT40Gz8JjblV6R_BJVblbjAgMUP-ZjsOztlPHm-Z-Th-ur-8hu9_f715vLilg41VqFCC-mclq10Urm-w05x14t-PnfC6vnIJB85SGB2bBEc2qHrLPROSKWk0kzMyOnOt4b7ucZczNLnAafJBozrbDjXGkCquvWMfPkLfYzrFGq6SvW6a7ng-o1a2AmNDy6WZIetqblogYFsu25Lnf2DqmfEpR9iQOfr_zsB2wmGFHNO6Mwq-aVNvw0Ds-3R7Ho0tUez7dGoqvn8HHg9X-L4qngprgJ8B-Q6CgtMbxv93_UJWoumGA</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Kinjo, Tomoaki</creator><creator>Terai, Kenta</creator><creator>Horita, Shoichiro</creator><creator>Nomura, Norimichi</creator><creator>Sumiyama, Kenta</creator><creator>Togashi, Kaori</creator><creator>Iwata, So</creator><creator>Matsuda, Michiyuki</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7SS</scope><scope>7TK</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8785-5439</orcidid><orcidid>https://orcid.org/0000-0002-6330-2239</orcidid><orcidid>https://orcid.org/0000-0003-1735-2937</orcidid><orcidid>https://orcid.org/0000-0001-7638-3720</orcidid><orcidid>https://orcid.org/0000-0002-5876-9969</orcidid></search><sort><creationdate>20191001</creationdate><title>FRET-assisted photoactivation of flavoproteins for in vivo two-photon optogenetics</title><author>Kinjo, Tomoaki ; Terai, Kenta ; Horita, Shoichiro ; Nomura, Norimichi ; Sumiyama, Kenta ; Togashi, Kaori ; Iwata, So ; Matsuda, Michiyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c548t-3834ff8464f45f97e752f939bbf3a8bd142d20401ad6e0feac77a09f345545813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/1647/2253</topic><topic>631/1647/328/2057</topic><topic>631/61/338</topic><topic>Activation</topic><topic>Analysis</topic><topic>Animals</topic><topic>Bioinformatics</topic><topic>Biological Microscopy</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Chromophores</topic><topic>Energy transfer</topic><topic>Energy transformation</topic><topic>Enzyme Activation</topic><topic>Excitation</topic><topic>Extracellular signal-regulated kinase</topic><topic>Extracellular Signal-Regulated MAP Kinases - metabolism</topic><topic>Flavoproteins</topic><topic>Flavoproteins - metabolism</topic><topic>Fluorescence resonance energy transfer</topic><topic>Fluorescence Resonance Energy Transfer - methods</topic><topic>Genetics</topic><topic>Information processing</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>Methods</topic><topic>Mice</topic><topic>Optical communication</topic><topic>Optical control</topic><topic>Optics</topic><topic>Optogenetics</topic><topic>Photoactivation</topic><topic>Photons</topic><topic>Protein engineering</topic><topic>Protein-protein interactions</topic><topic>Proteomics</topic><topic>Radioactivation analysis</topic><topic>Signal transduction</topic><topic>Signaling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kinjo, Tomoaki</creatorcontrib><creatorcontrib>Terai, Kenta</creatorcontrib><creatorcontrib>Horita, Shoichiro</creatorcontrib><creatorcontrib>Nomura, Norimichi</creatorcontrib><creatorcontrib>Sumiyama, Kenta</creatorcontrib><creatorcontrib>Togashi, Kaori</creatorcontrib><creatorcontrib>Iwata, So</creatorcontrib><creatorcontrib>Matsuda, Michiyuki</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kinjo, Tomoaki</au><au>Terai, Kenta</au><au>Horita, Shoichiro</au><au>Nomura, Norimichi</au><au>Sumiyama, Kenta</au><au>Togashi, Kaori</au><au>Iwata, So</au><au>Matsuda, Michiyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FRET-assisted photoactivation of flavoproteins for in vivo two-photon optogenetics</atitle><jtitle>Nature methods</jtitle><stitle>Nat Methods</stitle><addtitle>Nat Methods</addtitle><date>2019-10-01</date><risdate>2019</risdate><volume>16</volume><issue>10</issue><spage>1029</spage><epage>1036</epage><pages>1029-1036</pages><issn>1548-7091</issn><eissn>1548-7105</eissn><abstract>Optical dimerizers have been developed to untangle signaling pathways, but they are of limited use in vivo, partly due to their inefficient activation under two-photon (2P) excitation. To overcome this problem, we developed Förster resonance energy transfer (FRET)-assisted photoactivation, or FRAPA. On 2P excitation, mTagBFP2 efficiently absorbs and transfers the energy to the chromophore of CRY2. Based on structure-guided engineering, a chimeric protein with 40% FRET efficiency was developed and named 2P-activatable CRY2, or 2paCRY2. 2paCRY2 was employed to develop a RAF1 activation system named 2paRAF. In three-dimensionally cultured cells expressing 2paRAF, extracellular signal-regulated kinase (ERK) was efficiently activated by 2P excitation at single-cell resolution. Photoactivation of ERK was also accomplished in the epidermal cells of 2paRAF-expressing mice. We further developed an mTFP1-fused LOV domain that exhibits efficient response to 2P excitation. Collectively, FRAPA will pave the way to single-cell optical control of signaling pathways in vivo.
Fusion to fluorescent proteins enables efficient two-photon activation of blue-light-controlled optical dimerizers via FRET. FRET-assisted photoactivation was used to study extracellular signal-regulated kinase activation in 3D epithelial cysts, organoids and living mice.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>31501546</pmid><doi>10.1038/s41592-019-0541-5</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8785-5439</orcidid><orcidid>https://orcid.org/0000-0002-6330-2239</orcidid><orcidid>https://orcid.org/0000-0003-1735-2937</orcidid><orcidid>https://orcid.org/0000-0001-7638-3720</orcidid><orcidid>https://orcid.org/0000-0002-5876-9969</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1548-7091 |
ispartof | Nature methods, 2019-10, Vol.16 (10), p.1029-1036 |
issn | 1548-7091 1548-7105 |
language | eng |
recordid | cdi_proquest_miscellaneous_2288004503 |
source | MEDLINE; Nature; Alma/SFX Local Collection |
subjects | 631/1647/2253 631/1647/328/2057 631/61/338 Activation Analysis Animals Bioinformatics Biological Microscopy Biological Techniques Biomedical and Life Sciences Biomedical Engineering/Biotechnology Chromophores Energy transfer Energy transformation Enzyme Activation Excitation Extracellular signal-regulated kinase Extracellular Signal-Regulated MAP Kinases - metabolism Flavoproteins Flavoproteins - metabolism Fluorescence resonance energy transfer Fluorescence Resonance Energy Transfer - methods Genetics Information processing Kinases Life Sciences Methods Mice Optical communication Optical control Optics Optogenetics Photoactivation Photons Protein engineering Protein-protein interactions Proteomics Radioactivation analysis Signal transduction Signaling |
title | FRET-assisted photoactivation of flavoproteins for in vivo two-photon optogenetics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T18%3A08%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FRET-assisted%20photoactivation%20of%20flavoproteins%20for%20in%20vivo%20two-photon%20optogenetics&rft.jtitle=Nature%20methods&rft.au=Kinjo,%20Tomoaki&rft.date=2019-10-01&rft.volume=16&rft.issue=10&rft.spage=1029&rft.epage=1036&rft.pages=1029-1036&rft.issn=1548-7091&rft.eissn=1548-7105&rft_id=info:doi/10.1038/s41592-019-0541-5&rft_dat=%3Cgale_proqu%3EA601046778%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2298762328&rft_id=info:pmid/31501546&rft_galeid=A601046778&rfr_iscdi=true |