First Law of Holographic Complexity

We investigate the variation of holographic complexity for two nearby target states. Based on Nielsen's geometric approach, we find the variation only depends on the end point of the optimal trajectory, a result which we designate the first law of complexity. As an example, we examine the compl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2019-08, Vol.123 (8), p.081601-081601, Article 081601
Hauptverfasser: Bernamonti, Alice, Galli, Federico, Hernandez, Juan, Myers, Robert C, Ruan, Shan-Ming, Simón, Joan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 081601
container_issue 8
container_start_page 081601
container_title Physical review letters
container_volume 123
creator Bernamonti, Alice
Galli, Federico
Hernandez, Juan
Myers, Robert C
Ruan, Shan-Ming
Simón, Joan
description We investigate the variation of holographic complexity for two nearby target states. Based on Nielsen's geometric approach, we find the variation only depends on the end point of the optimal trajectory, a result which we designate the first law of complexity. As an example, we examine the complexity=action conjecture when the anti-de Sitter vacuum is perturbed by a scalar field excitation, which corresponds to a coherent state. Remarkably, the gravitational contributions completely cancel and the final variation reduces to a boundary term coming entirely from the scalar field action. Hence, the null boundary of Wheeler-DeWitt patch appears to act like the "end of the quantum circuit".
doi_str_mv 10.1103/PhysRevLett.123.081601
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2286946699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2286946699</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-36a1ed2c2db097f08721567afa6dd863082683d432256b0d7637eb89d1135d413</originalsourceid><addsrcrecordid>eNpdkE1Lw0AURQdRbK3-hRLoxk3qezPJfCylWCsEFNF1mGQmNiXpxEyi9t-b0iri6m3Ove9yCJkizBGB3Tytd_7ZfiS26-ZI2RwkcsATMkYQKhSI0SkZAzAMFYAYkQvvNwCAlMtzMmIYKaQgxmS2LFvfBYn-DFwRrFzl3lrdrMs8WLi6qexX2e0uyVmhK2-vjndCXpd3L4tVmDzePyxukzBnUnQh4xqtoTk1GShRgBQUYy50obkxkjOQw3NmIkZpzDMwgjNhM6kMIotNhGxCrg-9Tevee-u7tC59bqtKb63rfUqp5CriXKkBnf1DN65vt8O6PSUgxmHCQPEDlbfO-9YWadOWtW53KUK615j-0ZgOGtODxiE4Pdb3WW3Nb-zHG_sGYCdtoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2287051097</pqid></control><display><type>article</type><title>First Law of Holographic Complexity</title><source>American Physical Society Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bernamonti, Alice ; Galli, Federico ; Hernandez, Juan ; Myers, Robert C ; Ruan, Shan-Ming ; Simón, Joan</creator><creatorcontrib>Bernamonti, Alice ; Galli, Federico ; Hernandez, Juan ; Myers, Robert C ; Ruan, Shan-Ming ; Simón, Joan</creatorcontrib><description>We investigate the variation of holographic complexity for two nearby target states. Based on Nielsen's geometric approach, we find the variation only depends on the end point of the optimal trajectory, a result which we designate the first law of complexity. As an example, we examine the complexity=action conjecture when the anti-de Sitter vacuum is perturbed by a scalar field excitation, which corresponds to a coherent state. Remarkably, the gravitational contributions completely cancel and the final variation reduces to a boundary term coming entirely from the scalar field action. Hence, the null boundary of Wheeler-DeWitt patch appears to act like the "end of the quantum circuit".</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.123.081601</identifier><identifier>PMID: 31491207</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Complexity</subject><ispartof>Physical review letters, 2019-08, Vol.123 (8), p.081601-081601, Article 081601</ispartof><rights>Copyright American Physical Society Aug 23, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-36a1ed2c2db097f08721567afa6dd863082683d432256b0d7637eb89d1135d413</citedby><cites>FETCH-LOGICAL-c387t-36a1ed2c2db097f08721567afa6dd863082683d432256b0d7637eb89d1135d413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2875,2876,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31491207$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bernamonti, Alice</creatorcontrib><creatorcontrib>Galli, Federico</creatorcontrib><creatorcontrib>Hernandez, Juan</creatorcontrib><creatorcontrib>Myers, Robert C</creatorcontrib><creatorcontrib>Ruan, Shan-Ming</creatorcontrib><creatorcontrib>Simón, Joan</creatorcontrib><title>First Law of Holographic Complexity</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We investigate the variation of holographic complexity for two nearby target states. Based on Nielsen's geometric approach, we find the variation only depends on the end point of the optimal trajectory, a result which we designate the first law of complexity. As an example, we examine the complexity=action conjecture when the anti-de Sitter vacuum is perturbed by a scalar field excitation, which corresponds to a coherent state. Remarkably, the gravitational contributions completely cancel and the final variation reduces to a boundary term coming entirely from the scalar field action. Hence, the null boundary of Wheeler-DeWitt patch appears to act like the "end of the quantum circuit".</description><subject>Complexity</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AURQdRbK3-hRLoxk3qezPJfCylWCsEFNF1mGQmNiXpxEyi9t-b0iri6m3Ove9yCJkizBGB3Tytd_7ZfiS26-ZI2RwkcsATMkYQKhSI0SkZAzAMFYAYkQvvNwCAlMtzMmIYKaQgxmS2LFvfBYn-DFwRrFzl3lrdrMs8WLi6qexX2e0uyVmhK2-vjndCXpd3L4tVmDzePyxukzBnUnQh4xqtoTk1GShRgBQUYy50obkxkjOQw3NmIkZpzDMwgjNhM6kMIotNhGxCrg-9Tevee-u7tC59bqtKb63rfUqp5CriXKkBnf1DN65vt8O6PSUgxmHCQPEDlbfO-9YWadOWtW53KUK615j-0ZgOGtODxiE4Pdb3WW3Nb-zHG_sGYCdtoA</recordid><startdate>20190823</startdate><enddate>20190823</enddate><creator>Bernamonti, Alice</creator><creator>Galli, Federico</creator><creator>Hernandez, Juan</creator><creator>Myers, Robert C</creator><creator>Ruan, Shan-Ming</creator><creator>Simón, Joan</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20190823</creationdate><title>First Law of Holographic Complexity</title><author>Bernamonti, Alice ; Galli, Federico ; Hernandez, Juan ; Myers, Robert C ; Ruan, Shan-Ming ; Simón, Joan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-36a1ed2c2db097f08721567afa6dd863082683d432256b0d7637eb89d1135d413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Complexity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bernamonti, Alice</creatorcontrib><creatorcontrib>Galli, Federico</creatorcontrib><creatorcontrib>Hernandez, Juan</creatorcontrib><creatorcontrib>Myers, Robert C</creatorcontrib><creatorcontrib>Ruan, Shan-Ming</creatorcontrib><creatorcontrib>Simón, Joan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bernamonti, Alice</au><au>Galli, Federico</au><au>Hernandez, Juan</au><au>Myers, Robert C</au><au>Ruan, Shan-Ming</au><au>Simón, Joan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First Law of Holographic Complexity</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2019-08-23</date><risdate>2019</risdate><volume>123</volume><issue>8</issue><spage>081601</spage><epage>081601</epage><pages>081601-081601</pages><artnum>081601</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We investigate the variation of holographic complexity for two nearby target states. Based on Nielsen's geometric approach, we find the variation only depends on the end point of the optimal trajectory, a result which we designate the first law of complexity. As an example, we examine the complexity=action conjecture when the anti-de Sitter vacuum is perturbed by a scalar field excitation, which corresponds to a coherent state. Remarkably, the gravitational contributions completely cancel and the final variation reduces to a boundary term coming entirely from the scalar field action. Hence, the null boundary of Wheeler-DeWitt patch appears to act like the "end of the quantum circuit".</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>31491207</pmid><doi>10.1103/PhysRevLett.123.081601</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2019-08, Vol.123 (8), p.081601-081601, Article 081601
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_2286946699
source American Physical Society Journals; EZB-FREE-00999 freely available EZB journals
subjects Complexity
title First Law of Holographic Complexity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A59%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First%20Law%20of%20Holographic%20Complexity&rft.jtitle=Physical%20review%20letters&rft.au=Bernamonti,%20Alice&rft.date=2019-08-23&rft.volume=123&rft.issue=8&rft.spage=081601&rft.epage=081601&rft.pages=081601-081601&rft.artnum=081601&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.123.081601&rft_dat=%3Cproquest_cross%3E2286946699%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2287051097&rft_id=info:pmid/31491207&rfr_iscdi=true