First Law of Holographic Complexity
We investigate the variation of holographic complexity for two nearby target states. Based on Nielsen's geometric approach, we find the variation only depends on the end point of the optimal trajectory, a result which we designate the first law of complexity. As an example, we examine the compl...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2019-08, Vol.123 (8), p.081601-081601, Article 081601 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 081601 |
---|---|
container_issue | 8 |
container_start_page | 081601 |
container_title | Physical review letters |
container_volume | 123 |
creator | Bernamonti, Alice Galli, Federico Hernandez, Juan Myers, Robert C Ruan, Shan-Ming Simón, Joan |
description | We investigate the variation of holographic complexity for two nearby target states. Based on Nielsen's geometric approach, we find the variation only depends on the end point of the optimal trajectory, a result which we designate the first law of complexity. As an example, we examine the complexity=action conjecture when the anti-de Sitter vacuum is perturbed by a scalar field excitation, which corresponds to a coherent state. Remarkably, the gravitational contributions completely cancel and the final variation reduces to a boundary term coming entirely from the scalar field action. Hence, the null boundary of Wheeler-DeWitt patch appears to act like the "end of the quantum circuit". |
doi_str_mv | 10.1103/PhysRevLett.123.081601 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2286946699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2286946699</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-36a1ed2c2db097f08721567afa6dd863082683d432256b0d7637eb89d1135d413</originalsourceid><addsrcrecordid>eNpdkE1Lw0AURQdRbK3-hRLoxk3qezPJfCylWCsEFNF1mGQmNiXpxEyi9t-b0iri6m3Ove9yCJkizBGB3Tytd_7ZfiS26-ZI2RwkcsATMkYQKhSI0SkZAzAMFYAYkQvvNwCAlMtzMmIYKaQgxmS2LFvfBYn-DFwRrFzl3lrdrMs8WLi6qexX2e0uyVmhK2-vjndCXpd3L4tVmDzePyxukzBnUnQh4xqtoTk1GShRgBQUYy50obkxkjOQw3NmIkZpzDMwgjNhM6kMIotNhGxCrg-9Tevee-u7tC59bqtKb63rfUqp5CriXKkBnf1DN65vt8O6PSUgxmHCQPEDlbfO-9YWadOWtW53KUK615j-0ZgOGtODxiE4Pdb3WW3Nb-zHG_sGYCdtoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2287051097</pqid></control><display><type>article</type><title>First Law of Holographic Complexity</title><source>American Physical Society Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bernamonti, Alice ; Galli, Federico ; Hernandez, Juan ; Myers, Robert C ; Ruan, Shan-Ming ; Simón, Joan</creator><creatorcontrib>Bernamonti, Alice ; Galli, Federico ; Hernandez, Juan ; Myers, Robert C ; Ruan, Shan-Ming ; Simón, Joan</creatorcontrib><description>We investigate the variation of holographic complexity for two nearby target states. Based on Nielsen's geometric approach, we find the variation only depends on the end point of the optimal trajectory, a result which we designate the first law of complexity. As an example, we examine the complexity=action conjecture when the anti-de Sitter vacuum is perturbed by a scalar field excitation, which corresponds to a coherent state. Remarkably, the gravitational contributions completely cancel and the final variation reduces to a boundary term coming entirely from the scalar field action. Hence, the null boundary of Wheeler-DeWitt patch appears to act like the "end of the quantum circuit".</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.123.081601</identifier><identifier>PMID: 31491207</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Complexity</subject><ispartof>Physical review letters, 2019-08, Vol.123 (8), p.081601-081601, Article 081601</ispartof><rights>Copyright American Physical Society Aug 23, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-36a1ed2c2db097f08721567afa6dd863082683d432256b0d7637eb89d1135d413</citedby><cites>FETCH-LOGICAL-c387t-36a1ed2c2db097f08721567afa6dd863082683d432256b0d7637eb89d1135d413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2875,2876,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31491207$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bernamonti, Alice</creatorcontrib><creatorcontrib>Galli, Federico</creatorcontrib><creatorcontrib>Hernandez, Juan</creatorcontrib><creatorcontrib>Myers, Robert C</creatorcontrib><creatorcontrib>Ruan, Shan-Ming</creatorcontrib><creatorcontrib>Simón, Joan</creatorcontrib><title>First Law of Holographic Complexity</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We investigate the variation of holographic complexity for two nearby target states. Based on Nielsen's geometric approach, we find the variation only depends on the end point of the optimal trajectory, a result which we designate the first law of complexity. As an example, we examine the complexity=action conjecture when the anti-de Sitter vacuum is perturbed by a scalar field excitation, which corresponds to a coherent state. Remarkably, the gravitational contributions completely cancel and the final variation reduces to a boundary term coming entirely from the scalar field action. Hence, the null boundary of Wheeler-DeWitt patch appears to act like the "end of the quantum circuit".</description><subject>Complexity</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AURQdRbK3-hRLoxk3qezPJfCylWCsEFNF1mGQmNiXpxEyi9t-b0iri6m3Ove9yCJkizBGB3Tytd_7ZfiS26-ZI2RwkcsATMkYQKhSI0SkZAzAMFYAYkQvvNwCAlMtzMmIYKaQgxmS2LFvfBYn-DFwRrFzl3lrdrMs8WLi6qexX2e0uyVmhK2-vjndCXpd3L4tVmDzePyxukzBnUnQh4xqtoTk1GShRgBQUYy50obkxkjOQw3NmIkZpzDMwgjNhM6kMIotNhGxCrg-9Tevee-u7tC59bqtKb63rfUqp5CriXKkBnf1DN65vt8O6PSUgxmHCQPEDlbfO-9YWadOWtW53KUK615j-0ZgOGtODxiE4Pdb3WW3Nb-zHG_sGYCdtoA</recordid><startdate>20190823</startdate><enddate>20190823</enddate><creator>Bernamonti, Alice</creator><creator>Galli, Federico</creator><creator>Hernandez, Juan</creator><creator>Myers, Robert C</creator><creator>Ruan, Shan-Ming</creator><creator>Simón, Joan</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20190823</creationdate><title>First Law of Holographic Complexity</title><author>Bernamonti, Alice ; Galli, Federico ; Hernandez, Juan ; Myers, Robert C ; Ruan, Shan-Ming ; Simón, Joan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-36a1ed2c2db097f08721567afa6dd863082683d432256b0d7637eb89d1135d413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Complexity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bernamonti, Alice</creatorcontrib><creatorcontrib>Galli, Federico</creatorcontrib><creatorcontrib>Hernandez, Juan</creatorcontrib><creatorcontrib>Myers, Robert C</creatorcontrib><creatorcontrib>Ruan, Shan-Ming</creatorcontrib><creatorcontrib>Simón, Joan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bernamonti, Alice</au><au>Galli, Federico</au><au>Hernandez, Juan</au><au>Myers, Robert C</au><au>Ruan, Shan-Ming</au><au>Simón, Joan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First Law of Holographic Complexity</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2019-08-23</date><risdate>2019</risdate><volume>123</volume><issue>8</issue><spage>081601</spage><epage>081601</epage><pages>081601-081601</pages><artnum>081601</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We investigate the variation of holographic complexity for two nearby target states. Based on Nielsen's geometric approach, we find the variation only depends on the end point of the optimal trajectory, a result which we designate the first law of complexity. As an example, we examine the complexity=action conjecture when the anti-de Sitter vacuum is perturbed by a scalar field excitation, which corresponds to a coherent state. Remarkably, the gravitational contributions completely cancel and the final variation reduces to a boundary term coming entirely from the scalar field action. Hence, the null boundary of Wheeler-DeWitt patch appears to act like the "end of the quantum circuit".</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>31491207</pmid><doi>10.1103/PhysRevLett.123.081601</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2019-08, Vol.123 (8), p.081601-081601, Article 081601 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_2286946699 |
source | American Physical Society Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Complexity |
title | First Law of Holographic Complexity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A59%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First%20Law%20of%20Holographic%20Complexity&rft.jtitle=Physical%20review%20letters&rft.au=Bernamonti,%20Alice&rft.date=2019-08-23&rft.volume=123&rft.issue=8&rft.spage=081601&rft.epage=081601&rft.pages=081601-081601&rft.artnum=081601&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.123.081601&rft_dat=%3Cproquest_cross%3E2286946699%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2287051097&rft_id=info:pmid/31491207&rfr_iscdi=true |