Fully Integrated Design of a Stretchable Solid‐State Lithium‐Ion Full Battery

A solid‐state lithium‐ion battery, in which all components (current collector, anode and cathode, electrolyte, and packaging) are stretchable, is introduced, giving rise to a battery design with mechanical properties that are compliant with flexible electronic devices and elastic wearable systems. B...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2019-10, Vol.31 (43), p.e1904648-n/a
Hauptverfasser: Chen, Xi, Huang, Haijian, Pan, Long, Liu, Tian, Niederberger, Markus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 43
container_start_page e1904648
container_title Advanced materials (Weinheim)
container_volume 31
creator Chen, Xi
Huang, Haijian
Pan, Long
Liu, Tian
Niederberger, Markus
description A solid‐state lithium‐ion battery, in which all components (current collector, anode and cathode, electrolyte, and packaging) are stretchable, is introduced, giving rise to a battery design with mechanical properties that are compliant with flexible electronic devices and elastic wearable systems. By depositing Ag microflakes as a conductive layer on a stretchable carbon–polymer composite, a current collector with a low sheet resistance of ≈2.7 Ω □−1 at 100% strain is obtained. Stretchable electrodes are fabricated by integrating active materials with the elastic current collector. A polyacrylamide–“water‐in‐salt” electrolyte is developed, offering high ionic conductivity of 10−3 to 10−2 S cm−1 at room temperature and outstanding stretchability up to ≈300% of its original length. Finally, all these components are assembled into a solid‐state lithium‐ion full cell in thin‐film configuration. Thanks to the deformable individual components, the full cell functions when stretched, bent, or even twisted. For example, after stretching the battery to 50%, a reversible capacity of 28 mAh g−1 and an average energy density of 20 Wh kg−1 can still be obtained after 50 cycles at 120 mA g−1, confirming the functionality of the battery under extreme mechanical stress. A solid‐state lithium‐ion battery, in which all components (current collector, anode and cathode, electrolyte, and packaging) are stretchable, is designed and fabricated. The thin‐film full cell can be stretched up to 50% of its original length during the charge and discharge process.
doi_str_mv 10.1002/adma.201904648
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2286940928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2286940928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4128-dbe69bfb1cfaa1ffea6e2ccfae61ed18d684373f2a95bd895b3d1f7204267bc83</originalsourceid><addsrcrecordid>eNqFkMtKAzEUQIMoWh9blxJw42Zqkkkzk2V9Fyoi1XXITG7qyDw0ySDd-Ql-o19iSquCGzcJN5wcLgehQ0qGlBB2qk2jh4xQSbjg-QYa0BGjCSdytIkGRKajRMb3HbTr_TMhRAoittFOSnkuM04G6P6qr-sFnrQB5k4HMPgCfDVvcWexxrPgIJRPuqgBz7q6Mp_vH7MQMTytwlPVN3GedC1eSvCZDgHcYh9tWV17OFjfe-jx6vLh_CaZ3l1PzsfTpOSU5YkpQMjCFrS0WlNrQQtgZRxAUDA0NyLnaZZapuWoMHk8UkNtxghnIivKPN1DJyvvi-tee_BBNZUvoa51C13vFWO5kDEEW6LHf9Dnrndt3E6xlGQ8FVRkkRquqNJ13juw6sVVjXYLRYlaxlbL2OondvxwtNb2RQPmB_-uGwG5At6qGhb_6NT44nb8K_8Cd6qNLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2307436167</pqid></control><display><type>article</type><title>Fully Integrated Design of a Stretchable Solid‐State Lithium‐Ion Full Battery</title><source>Wiley Journals</source><creator>Chen, Xi ; Huang, Haijian ; Pan, Long ; Liu, Tian ; Niederberger, Markus</creator><creatorcontrib>Chen, Xi ; Huang, Haijian ; Pan, Long ; Liu, Tian ; Niederberger, Markus</creatorcontrib><description>A solid‐state lithium‐ion battery, in which all components (current collector, anode and cathode, electrolyte, and packaging) are stretchable, is introduced, giving rise to a battery design with mechanical properties that are compliant with flexible electronic devices and elastic wearable systems. By depositing Ag microflakes as a conductive layer on a stretchable carbon–polymer composite, a current collector with a low sheet resistance of ≈2.7 Ω □−1 at 100% strain is obtained. Stretchable electrodes are fabricated by integrating active materials with the elastic current collector. A polyacrylamide–“water‐in‐salt” electrolyte is developed, offering high ionic conductivity of 10−3 to 10−2 S cm−1 at room temperature and outstanding stretchability up to ≈300% of its original length. Finally, all these components are assembled into a solid‐state lithium‐ion full cell in thin‐film configuration. Thanks to the deformable individual components, the full cell functions when stretched, bent, or even twisted. For example, after stretching the battery to 50%, a reversible capacity of 28 mAh g−1 and an average energy density of 20 Wh kg−1 can still be obtained after 50 cycles at 120 mA g−1, confirming the functionality of the battery under extreme mechanical stress. A solid‐state lithium‐ion battery, in which all components (current collector, anode and cathode, electrolyte, and packaging) are stretchable, is designed and fabricated. The thin‐film full cell can be stretched up to 50% of its original length during the charge and discharge process.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201904648</identifier><identifier>PMID: 31489740</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>composite current collectors ; Electrolytes ; Electronic devices ; Flux density ; Formability ; hydrogel electrolytes ; Ion currents ; Lithium ; Lithium-ion batteries ; Mechanical properties ; Modulus of elasticity ; Polyacrylamide ; Polymer matrix composites ; solid‐state ; Stretchability ; stretchable batteries</subject><ispartof>Advanced materials (Weinheim), 2019-10, Vol.31 (43), p.e1904648-n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4128-dbe69bfb1cfaa1ffea6e2ccfae61ed18d684373f2a95bd895b3d1f7204267bc83</citedby><cites>FETCH-LOGICAL-c4128-dbe69bfb1cfaa1ffea6e2ccfae61ed18d684373f2a95bd895b3d1f7204267bc83</cites><orcidid>0000-0001-6058-1183</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201904648$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201904648$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31489740$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Huang, Haijian</creatorcontrib><creatorcontrib>Pan, Long</creatorcontrib><creatorcontrib>Liu, Tian</creatorcontrib><creatorcontrib>Niederberger, Markus</creatorcontrib><title>Fully Integrated Design of a Stretchable Solid‐State Lithium‐Ion Full Battery</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>A solid‐state lithium‐ion battery, in which all components (current collector, anode and cathode, electrolyte, and packaging) are stretchable, is introduced, giving rise to a battery design with mechanical properties that are compliant with flexible electronic devices and elastic wearable systems. By depositing Ag microflakes as a conductive layer on a stretchable carbon–polymer composite, a current collector with a low sheet resistance of ≈2.7 Ω □−1 at 100% strain is obtained. Stretchable electrodes are fabricated by integrating active materials with the elastic current collector. A polyacrylamide–“water‐in‐salt” electrolyte is developed, offering high ionic conductivity of 10−3 to 10−2 S cm−1 at room temperature and outstanding stretchability up to ≈300% of its original length. Finally, all these components are assembled into a solid‐state lithium‐ion full cell in thin‐film configuration. Thanks to the deformable individual components, the full cell functions when stretched, bent, or even twisted. For example, after stretching the battery to 50%, a reversible capacity of 28 mAh g−1 and an average energy density of 20 Wh kg−1 can still be obtained after 50 cycles at 120 mA g−1, confirming the functionality of the battery under extreme mechanical stress. A solid‐state lithium‐ion battery, in which all components (current collector, anode and cathode, electrolyte, and packaging) are stretchable, is designed and fabricated. The thin‐film full cell can be stretched up to 50% of its original length during the charge and discharge process.</description><subject>composite current collectors</subject><subject>Electrolytes</subject><subject>Electronic devices</subject><subject>Flux density</subject><subject>Formability</subject><subject>hydrogel electrolytes</subject><subject>Ion currents</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Polyacrylamide</subject><subject>Polymer matrix composites</subject><subject>solid‐state</subject><subject>Stretchability</subject><subject>stretchable batteries</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKAzEUQIMoWh9blxJw42Zqkkkzk2V9Fyoi1XXITG7qyDw0ySDd-Ql-o19iSquCGzcJN5wcLgehQ0qGlBB2qk2jh4xQSbjg-QYa0BGjCSdytIkGRKajRMb3HbTr_TMhRAoittFOSnkuM04G6P6qr-sFnrQB5k4HMPgCfDVvcWexxrPgIJRPuqgBz7q6Mp_vH7MQMTytwlPVN3GedC1eSvCZDgHcYh9tWV17OFjfe-jx6vLh_CaZ3l1PzsfTpOSU5YkpQMjCFrS0WlNrQQtgZRxAUDA0NyLnaZZapuWoMHk8UkNtxghnIivKPN1DJyvvi-tee_BBNZUvoa51C13vFWO5kDEEW6LHf9Dnrndt3E6xlGQ8FVRkkRquqNJ13juw6sVVjXYLRYlaxlbL2OondvxwtNb2RQPmB_-uGwG5At6qGhb_6NT44nb8K_8Cd6qNLg</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Chen, Xi</creator><creator>Huang, Haijian</creator><creator>Pan, Long</creator><creator>Liu, Tian</creator><creator>Niederberger, Markus</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6058-1183</orcidid></search><sort><creationdate>20191001</creationdate><title>Fully Integrated Design of a Stretchable Solid‐State Lithium‐Ion Full Battery</title><author>Chen, Xi ; Huang, Haijian ; Pan, Long ; Liu, Tian ; Niederberger, Markus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4128-dbe69bfb1cfaa1ffea6e2ccfae61ed18d684373f2a95bd895b3d1f7204267bc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>composite current collectors</topic><topic>Electrolytes</topic><topic>Electronic devices</topic><topic>Flux density</topic><topic>Formability</topic><topic>hydrogel electrolytes</topic><topic>Ion currents</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Polyacrylamide</topic><topic>Polymer matrix composites</topic><topic>solid‐state</topic><topic>Stretchability</topic><topic>stretchable batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Huang, Haijian</creatorcontrib><creatorcontrib>Pan, Long</creatorcontrib><creatorcontrib>Liu, Tian</creatorcontrib><creatorcontrib>Niederberger, Markus</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xi</au><au>Huang, Haijian</au><au>Pan, Long</au><au>Liu, Tian</au><au>Niederberger, Markus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fully Integrated Design of a Stretchable Solid‐State Lithium‐Ion Full Battery</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2019-10-01</date><risdate>2019</risdate><volume>31</volume><issue>43</issue><spage>e1904648</spage><epage>n/a</epage><pages>e1904648-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>A solid‐state lithium‐ion battery, in which all components (current collector, anode and cathode, electrolyte, and packaging) are stretchable, is introduced, giving rise to a battery design with mechanical properties that are compliant with flexible electronic devices and elastic wearable systems. By depositing Ag microflakes as a conductive layer on a stretchable carbon–polymer composite, a current collector with a low sheet resistance of ≈2.7 Ω □−1 at 100% strain is obtained. Stretchable electrodes are fabricated by integrating active materials with the elastic current collector. A polyacrylamide–“water‐in‐salt” electrolyte is developed, offering high ionic conductivity of 10−3 to 10−2 S cm−1 at room temperature and outstanding stretchability up to ≈300% of its original length. Finally, all these components are assembled into a solid‐state lithium‐ion full cell in thin‐film configuration. Thanks to the deformable individual components, the full cell functions when stretched, bent, or even twisted. For example, after stretching the battery to 50%, a reversible capacity of 28 mAh g−1 and an average energy density of 20 Wh kg−1 can still be obtained after 50 cycles at 120 mA g−1, confirming the functionality of the battery under extreme mechanical stress. A solid‐state lithium‐ion battery, in which all components (current collector, anode and cathode, electrolyte, and packaging) are stretchable, is designed and fabricated. The thin‐film full cell can be stretched up to 50% of its original length during the charge and discharge process.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31489740</pmid><doi>10.1002/adma.201904648</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6058-1183</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2019-10, Vol.31 (43), p.e1904648-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2286940928
source Wiley Journals
subjects composite current collectors
Electrolytes
Electronic devices
Flux density
Formability
hydrogel electrolytes
Ion currents
Lithium
Lithium-ion batteries
Mechanical properties
Modulus of elasticity
Polyacrylamide
Polymer matrix composites
solid‐state
Stretchability
stretchable batteries
title Fully Integrated Design of a Stretchable Solid‐State Lithium‐Ion Full Battery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A47%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fully%20Integrated%20Design%20of%20a%20Stretchable%20Solid%E2%80%90State%20Lithium%E2%80%90Ion%20Full%20Battery&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Chen,%20Xi&rft.date=2019-10-01&rft.volume=31&rft.issue=43&rft.spage=e1904648&rft.epage=n/a&rft.pages=e1904648-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201904648&rft_dat=%3Cproquest_cross%3E2286940928%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2307436167&rft_id=info:pmid/31489740&rfr_iscdi=true