Resolving dynamic fragmentation of liquids at the nanoscale with ultrafast small‐angle X‐ray scattering

High‐brightness coherent ultrashort X‐ray free‐electron lasers (XFELs) are promising in resolving nanoscale structures at the highest temporal resolution (∼10 fs). The feasibility is explored of resolving ultrafast fragmentation of liquids at the nanoscale with single‐shot small‐angle X‐ray scatteri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of synchrotron radiation 2019-09, Vol.26 (5), p.1412-1421
Hauptverfasser: Chen, Sen, Chai, Hai-Wei, He, An-Min, Tschentscher, Thomas, Cai, Yang, Luo, Sheng-Nian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1421
container_issue 5
container_start_page 1412
container_title Journal of synchrotron radiation
container_volume 26
creator Chen, Sen
Chai, Hai-Wei
He, An-Min
Tschentscher, Thomas
Cai, Yang
Luo, Sheng-Nian
description High‐brightness coherent ultrashort X‐ray free‐electron lasers (XFELs) are promising in resolving nanoscale structures at the highest temporal resolution (∼10 fs). The feasibility is explored of resolving ultrafast fragmentation of liquids at the nanoscale with single‐shot small‐angle X‐ray scattering (SAXS) on the basis of large‐scale molecular dynamics simulations. Fragmentation of liquid sheets under adiabatic expansion is investigated. From the simulated SAXS patterns, particle‐volume size distributions are obtained with the regularization method and average particle sizes with the weighted Guinier method, at different expansion rates. The particle sizes obtained from simulated SAXS are in excellent agreement with direct cluster analysis. Pulse‐width effects on SAXS measurements are examined. The results demonstrate the feasibility of resolving the nanoscale dynamics of fragmentation and similar processes with SAXS, and provide guidance for future XFEL experiments and data interpretation. The feasibility is explored of resolving ultrafast fragmentation of liquids at the nanoscale with single‐shot small‐angle X‐ray scattering on the basis of large‐scale molecular dynamics simulations. From the simulated SAXS patterns, particle‐volume size distributions are obtained with the regularization method and average particle sizes with the weighted Guinier method, at different expansion rates.
doi_str_mv 10.1107/S160057751900732X
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_2286936957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2285112370</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3792-93046c447e2d6268232d6a3af93cd4b5c91a1d9dec158140da55404f4b174d823</originalsourceid><addsrcrecordid>eNqFkc1uFDEMxyMEoh_wAFxQJC5cFuJ8TDZHtAIKqlSJglROI2-S2aZkMm2Sodobj8Az8iRktQUhOHCyZf_8t-U_IU-AvQBg-uU5dIwprRUYxrTgF_fI4a602NXu_5EfkKNSrhiDTnPxkBwIkIYBN4fkywdfpvg1pA1124RjsHTIuBl9qljDlOg00Bhu5uAKxUrrpacJ01QsRk9vQ72kc6wZByyVlhFj_PHtO6ZNa160LOOWNrRWn9uGR-TBgLH4x3fxmHx68_rj6mRxevb23erV6cIKbfjCCCY7K6X23HW8W3LRIgocjLBOrpU1gOCM8xbUEiRzqJRkcpBr0NI1_Jg83-te5-lm9qX2YyjWx4jJT3PpOV92RnRG6YY--wu9muac2nU7SgFwoVmjYE_ZPJWS_dBf5zBi3vbA-p0T_T9OtJmnd8rzevTu98Sv1zfA7IHbEP32_4r9-_PPfHWmgHPxEz5OldI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2285112370</pqid></control><display><type>article</type><title>Resolving dynamic fragmentation of liquids at the nanoscale with ultrafast small‐angle X‐ray scattering</title><source>Wiley Online Library Open Access</source><creator>Chen, Sen ; Chai, Hai-Wei ; He, An-Min ; Tschentscher, Thomas ; Cai, Yang ; Luo, Sheng-Nian</creator><creatorcontrib>Chen, Sen ; Chai, Hai-Wei ; He, An-Min ; Tschentscher, Thomas ; Cai, Yang ; Luo, Sheng-Nian</creatorcontrib><description>High‐brightness coherent ultrashort X‐ray free‐electron lasers (XFELs) are promising in resolving nanoscale structures at the highest temporal resolution (∼10 fs). The feasibility is explored of resolving ultrafast fragmentation of liquids at the nanoscale with single‐shot small‐angle X‐ray scattering (SAXS) on the basis of large‐scale molecular dynamics simulations. Fragmentation of liquid sheets under adiabatic expansion is investigated. From the simulated SAXS patterns, particle‐volume size distributions are obtained with the regularization method and average particle sizes with the weighted Guinier method, at different expansion rates. The particle sizes obtained from simulated SAXS are in excellent agreement with direct cluster analysis. Pulse‐width effects on SAXS measurements are examined. The results demonstrate the feasibility of resolving the nanoscale dynamics of fragmentation and similar processes with SAXS, and provide guidance for future XFEL experiments and data interpretation. The feasibility is explored of resolving ultrafast fragmentation of liquids at the nanoscale with single‐shot small‐angle X‐ray scattering on the basis of large‐scale molecular dynamics simulations. From the simulated SAXS patterns, particle‐volume size distributions are obtained with the regularization method and average particle sizes with the weighted Guinier method, at different expansion rates.</description><identifier>ISSN: 1600-5775</identifier><identifier>ISSN: 0909-0495</identifier><identifier>EISSN: 1600-5775</identifier><identifier>DOI: 10.1107/S160057751900732X</identifier><identifier>PMID: 31490129</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>Algorithms ; Bedding ; Cluster analysis ; Coherent scattering ; Feasibility ; Feasibility Studies ; Fragmentation ; Ionic Liquids - chemistry ; Lasers ; Liquid sheets ; Liquids ; Molecular dynamics ; Molecular Dynamics Simulation ; nanoscale fragmentation ; Particle Size ; Regularization ; Regularization methods ; Scattering, Small Angle ; Simulation ; Small angle X ray scattering ; Temporal resolution ; X-Rays ; XFELs</subject><ispartof>Journal of synchrotron radiation, 2019-09, Vol.26 (5), p.1412-1421</ispartof><rights>International Union of Crystallography, 2019</rights><rights>Copyright Wiley Subscription Services, Inc. Sep 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3792-93046c447e2d6268232d6a3af93cd4b5c91a1d9dec158140da55404f4b174d823</citedby><cites>FETCH-LOGICAL-c3792-93046c447e2d6268232d6a3af93cd4b5c91a1d9dec158140da55404f4b174d823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1107%2FS160057751900732X$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1107%2FS160057751900732X$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,11541,27901,27902,45550,45551,46027,46451</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1107%2FS160057751900732X$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31490129$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Sen</creatorcontrib><creatorcontrib>Chai, Hai-Wei</creatorcontrib><creatorcontrib>He, An-Min</creatorcontrib><creatorcontrib>Tschentscher, Thomas</creatorcontrib><creatorcontrib>Cai, Yang</creatorcontrib><creatorcontrib>Luo, Sheng-Nian</creatorcontrib><title>Resolving dynamic fragmentation of liquids at the nanoscale with ultrafast small‐angle X‐ray scattering</title><title>Journal of synchrotron radiation</title><addtitle>J Synchrotron Radiat</addtitle><description>High‐brightness coherent ultrashort X‐ray free‐electron lasers (XFELs) are promising in resolving nanoscale structures at the highest temporal resolution (∼10 fs). The feasibility is explored of resolving ultrafast fragmentation of liquids at the nanoscale with single‐shot small‐angle X‐ray scattering (SAXS) on the basis of large‐scale molecular dynamics simulations. Fragmentation of liquid sheets under adiabatic expansion is investigated. From the simulated SAXS patterns, particle‐volume size distributions are obtained with the regularization method and average particle sizes with the weighted Guinier method, at different expansion rates. The particle sizes obtained from simulated SAXS are in excellent agreement with direct cluster analysis. Pulse‐width effects on SAXS measurements are examined. The results demonstrate the feasibility of resolving the nanoscale dynamics of fragmentation and similar processes with SAXS, and provide guidance for future XFEL experiments and data interpretation. The feasibility is explored of resolving ultrafast fragmentation of liquids at the nanoscale with single‐shot small‐angle X‐ray scattering on the basis of large‐scale molecular dynamics simulations. From the simulated SAXS patterns, particle‐volume size distributions are obtained with the regularization method and average particle sizes with the weighted Guinier method, at different expansion rates.</description><subject>Algorithms</subject><subject>Bedding</subject><subject>Cluster analysis</subject><subject>Coherent scattering</subject><subject>Feasibility</subject><subject>Feasibility Studies</subject><subject>Fragmentation</subject><subject>Ionic Liquids - chemistry</subject><subject>Lasers</subject><subject>Liquid sheets</subject><subject>Liquids</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>nanoscale fragmentation</subject><subject>Particle Size</subject><subject>Regularization</subject><subject>Regularization methods</subject><subject>Scattering, Small Angle</subject><subject>Simulation</subject><subject>Small angle X ray scattering</subject><subject>Temporal resolution</subject><subject>X-Rays</subject><subject>XFELs</subject><issn>1600-5775</issn><issn>0909-0495</issn><issn>1600-5775</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1uFDEMxyMEoh_wAFxQJC5cFuJ8TDZHtAIKqlSJglROI2-S2aZkMm2Sodobj8Az8iRktQUhOHCyZf_8t-U_IU-AvQBg-uU5dIwprRUYxrTgF_fI4a602NXu_5EfkKNSrhiDTnPxkBwIkIYBN4fkywdfpvg1pA1124RjsHTIuBl9qljDlOg00Bhu5uAKxUrrpacJ01QsRk9vQ72kc6wZByyVlhFj_PHtO6ZNa160LOOWNrRWn9uGR-TBgLH4x3fxmHx68_rj6mRxevb23erV6cIKbfjCCCY7K6X23HW8W3LRIgocjLBOrpU1gOCM8xbUEiRzqJRkcpBr0NI1_Jg83-te5-lm9qX2YyjWx4jJT3PpOV92RnRG6YY--wu9muac2nU7SgFwoVmjYE_ZPJWS_dBf5zBi3vbA-p0T_T9OtJmnd8rzevTu98Sv1zfA7IHbEP32_4r9-_PPfHWmgHPxEz5OldI</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Chen, Sen</creator><creator>Chai, Hai-Wei</creator><creator>He, An-Min</creator><creator>Tschentscher, Thomas</creator><creator>Cai, Yang</creator><creator>Luo, Sheng-Nian</creator><general>International Union of Crystallography</general><general>John Wiley &amp; Sons, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>201909</creationdate><title>Resolving dynamic fragmentation of liquids at the nanoscale with ultrafast small‐angle X‐ray scattering</title><author>Chen, Sen ; Chai, Hai-Wei ; He, An-Min ; Tschentscher, Thomas ; Cai, Yang ; Luo, Sheng-Nian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3792-93046c447e2d6268232d6a3af93cd4b5c91a1d9dec158140da55404f4b174d823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Bedding</topic><topic>Cluster analysis</topic><topic>Coherent scattering</topic><topic>Feasibility</topic><topic>Feasibility Studies</topic><topic>Fragmentation</topic><topic>Ionic Liquids - chemistry</topic><topic>Lasers</topic><topic>Liquid sheets</topic><topic>Liquids</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>nanoscale fragmentation</topic><topic>Particle Size</topic><topic>Regularization</topic><topic>Regularization methods</topic><topic>Scattering, Small Angle</topic><topic>Simulation</topic><topic>Small angle X ray scattering</topic><topic>Temporal resolution</topic><topic>X-Rays</topic><topic>XFELs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Sen</creatorcontrib><creatorcontrib>Chai, Hai-Wei</creatorcontrib><creatorcontrib>He, An-Min</creatorcontrib><creatorcontrib>Tschentscher, Thomas</creatorcontrib><creatorcontrib>Cai, Yang</creatorcontrib><creatorcontrib>Luo, Sheng-Nian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of synchrotron radiation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Sen</au><au>Chai, Hai-Wei</au><au>He, An-Min</au><au>Tschentscher, Thomas</au><au>Cai, Yang</au><au>Luo, Sheng-Nian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resolving dynamic fragmentation of liquids at the nanoscale with ultrafast small‐angle X‐ray scattering</atitle><jtitle>Journal of synchrotron radiation</jtitle><addtitle>J Synchrotron Radiat</addtitle><date>2019-09</date><risdate>2019</risdate><volume>26</volume><issue>5</issue><spage>1412</spage><epage>1421</epage><pages>1412-1421</pages><issn>1600-5775</issn><issn>0909-0495</issn><eissn>1600-5775</eissn><abstract>High‐brightness coherent ultrashort X‐ray free‐electron lasers (XFELs) are promising in resolving nanoscale structures at the highest temporal resolution (∼10 fs). The feasibility is explored of resolving ultrafast fragmentation of liquids at the nanoscale with single‐shot small‐angle X‐ray scattering (SAXS) on the basis of large‐scale molecular dynamics simulations. Fragmentation of liquid sheets under adiabatic expansion is investigated. From the simulated SAXS patterns, particle‐volume size distributions are obtained with the regularization method and average particle sizes with the weighted Guinier method, at different expansion rates. The particle sizes obtained from simulated SAXS are in excellent agreement with direct cluster analysis. Pulse‐width effects on SAXS measurements are examined. The results demonstrate the feasibility of resolving the nanoscale dynamics of fragmentation and similar processes with SAXS, and provide guidance for future XFEL experiments and data interpretation. The feasibility is explored of resolving ultrafast fragmentation of liquids at the nanoscale with single‐shot small‐angle X‐ray scattering on the basis of large‐scale molecular dynamics simulations. From the simulated SAXS patterns, particle‐volume size distributions are obtained with the regularization method and average particle sizes with the weighted Guinier method, at different expansion rates.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><pmid>31490129</pmid><doi>10.1107/S160057751900732X</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1600-5775
ispartof Journal of synchrotron radiation, 2019-09, Vol.26 (5), p.1412-1421
issn 1600-5775
0909-0495
1600-5775
language eng
recordid cdi_proquest_miscellaneous_2286936957
source Wiley Online Library Open Access
subjects Algorithms
Bedding
Cluster analysis
Coherent scattering
Feasibility
Feasibility Studies
Fragmentation
Ionic Liquids - chemistry
Lasers
Liquid sheets
Liquids
Molecular dynamics
Molecular Dynamics Simulation
nanoscale fragmentation
Particle Size
Regularization
Regularization methods
Scattering, Small Angle
Simulation
Small angle X ray scattering
Temporal resolution
X-Rays
XFELs
title Resolving dynamic fragmentation of liquids at the nanoscale with ultrafast small‐angle X‐ray scattering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A24%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resolving%20dynamic%20fragmentation%20of%20liquids%20at%20the%20nanoscale%20with%20ultrafast%20small%E2%80%90angle%20X%E2%80%90ray%20scattering&rft.jtitle=Journal%20of%20synchrotron%20radiation&rft.au=Chen,%20Sen&rft.date=2019-09&rft.volume=26&rft.issue=5&rft.spage=1412&rft.epage=1421&rft.pages=1412-1421&rft.issn=1600-5775&rft.eissn=1600-5775&rft_id=info:doi/10.1107/S160057751900732X&rft_dat=%3Cproquest_24P%3E2285112370%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2285112370&rft_id=info:pmid/31490129&rfr_iscdi=true