Fully Solution-Processed Transparent Artificial Neural Network Using Drop-On-Demand Electrohydrodynamic Printing

Artificial neural networks (ANN), deep learning, and neuromorphic systems are exciting new processing architectures being used to implement a wide variety of intelligent and adaptive systems. To date, these architectures have been primarily realized using traditional complementary metal–oxide–semico...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2019-05, Vol.11 (19), p.17521-17530
Hauptverfasser: Yong, Jason, Liang, You, Yu, Yang, Hassan, Basem, Hossain, Md Sharafat, Ganesan, Kumaravelu, Unnithan, Ranjith Rajasekharan, Evans, Robin, Egan, Gary, Chana, Gursharan, Nasr, Babak, Skafidas, Efstratios
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17530
container_issue 19
container_start_page 17521
container_title ACS applied materials & interfaces
container_volume 11
creator Yong, Jason
Liang, You
Yu, Yang
Hassan, Basem
Hossain, Md Sharafat
Ganesan, Kumaravelu
Unnithan, Ranjith Rajasekharan
Evans, Robin
Egan, Gary
Chana, Gursharan
Nasr, Babak
Skafidas, Efstratios
description Artificial neural networks (ANN), deep learning, and neuromorphic systems are exciting new processing architectures being used to implement a wide variety of intelligent and adaptive systems. To date, these architectures have been primarily realized using traditional complementary metal–oxide–semiconductor (CMOS) processes or otherwise conventional semiconductor fabrication processes. Thus, the high cost associated with the design and fabrication of these circuits has limited the broader scientific community from applying new ideas, and arguably, has slowed research progress in this exciting new area. Solution-processed electronics offer an attractive option for providing low-cost rapid prototyping of neuromorphic devices. This article proposes a novel, wholly solution-based process used to produce low-cost transparent synaptic transistors capable of emulating biological synaptic functioning and thus used to construct ANN. We have demonstrated the fabrication process by constructing an ANN that encodes and decodes a 100 × 100 pixel image. Here, the synaptic weights were configured to achieve the desired image processing functions.
doi_str_mv 10.1021/acsami.9b02465
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2286927031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2286927031</sourcerecordid><originalsourceid>FETCH-LOGICAL-a363t-8cd830275e6cd81adb698f79ebd73791ea6fa14c51e112b0eeb7e7fe06e3cbd13</originalsourceid><addsrcrecordid>eNqNkUtLxDAUhYMoOj62LqVLETrm0TbtUuahgqjgzLqkya1G26QmLdJ_b3RGd4KrcxbfOVzuQeiU4CnBlFwK6UWrp0WFaZKlO2hCiiSJc5rS3V-fJAfo0PtXjDNGcbqPDhjBmGOSTFC3HJpmjJ5sM_TamvjRWQneg4pWThjfCQemj65cr2sttWiiexjct_Qf1r1Fa6_NczR3tosfTDyHVhgVLRqQvbMvo3JWjSYcKKNHp00f2GO0V4vGw8lWj9B6uVjNbuK7h-vb2dVdLFjG-jiXKmeY8hSy4IhQVVbkNS-gUpzxgoDIakESmRIghFYYoOLAa8AZMFkpwo7Q-aa3c_Z9AN-XrfYSmkYYsIMvKc2zgnLM_oMSykla5Cyg0w0qnfXeQV12TrfCjSXB5dcg5WaQcjtICJxtu4eqBfWL_ywQgIsNEILlqx2cCV_5q-0TwLOXvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2212715983</pqid></control><display><type>article</type><title>Fully Solution-Processed Transparent Artificial Neural Network Using Drop-On-Demand Electrohydrodynamic Printing</title><source>ACS Publications</source><creator>Yong, Jason ; Liang, You ; Yu, Yang ; Hassan, Basem ; Hossain, Md Sharafat ; Ganesan, Kumaravelu ; Unnithan, Ranjith Rajasekharan ; Evans, Robin ; Egan, Gary ; Chana, Gursharan ; Nasr, Babak ; Skafidas, Efstratios</creator><creatorcontrib>Yong, Jason ; Liang, You ; Yu, Yang ; Hassan, Basem ; Hossain, Md Sharafat ; Ganesan, Kumaravelu ; Unnithan, Ranjith Rajasekharan ; Evans, Robin ; Egan, Gary ; Chana, Gursharan ; Nasr, Babak ; Skafidas, Efstratios</creatorcontrib><description>Artificial neural networks (ANN), deep learning, and neuromorphic systems are exciting new processing architectures being used to implement a wide variety of intelligent and adaptive systems. To date, these architectures have been primarily realized using traditional complementary metal–oxide–semiconductor (CMOS) processes or otherwise conventional semiconductor fabrication processes. Thus, the high cost associated with the design and fabrication of these circuits has limited the broader scientific community from applying new ideas, and arguably, has slowed research progress in this exciting new area. Solution-processed electronics offer an attractive option for providing low-cost rapid prototyping of neuromorphic devices. This article proposes a novel, wholly solution-based process used to produce low-cost transparent synaptic transistors capable of emulating biological synaptic functioning and thus used to construct ANN. We have demonstrated the fabrication process by constructing an ANN that encodes and decodes a 100 × 100 pixel image. Here, the synaptic weights were configured to achieve the desired image processing functions.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.9b02465</identifier><identifier>PMID: 31007014</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>electronics ; image analysis ; neural networks ; transistors</subject><ispartof>ACS applied materials &amp; interfaces, 2019-05, Vol.11 (19), p.17521-17530</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a363t-8cd830275e6cd81adb698f79ebd73791ea6fa14c51e112b0eeb7e7fe06e3cbd13</citedby><cites>FETCH-LOGICAL-a363t-8cd830275e6cd81adb698f79ebd73791ea6fa14c51e112b0eeb7e7fe06e3cbd13</cites><orcidid>0000-0002-5966-5280 ; 0000-0003-0168-5665</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.9b02465$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.9b02465$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31007014$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yong, Jason</creatorcontrib><creatorcontrib>Liang, You</creatorcontrib><creatorcontrib>Yu, Yang</creatorcontrib><creatorcontrib>Hassan, Basem</creatorcontrib><creatorcontrib>Hossain, Md Sharafat</creatorcontrib><creatorcontrib>Ganesan, Kumaravelu</creatorcontrib><creatorcontrib>Unnithan, Ranjith Rajasekharan</creatorcontrib><creatorcontrib>Evans, Robin</creatorcontrib><creatorcontrib>Egan, Gary</creatorcontrib><creatorcontrib>Chana, Gursharan</creatorcontrib><creatorcontrib>Nasr, Babak</creatorcontrib><creatorcontrib>Skafidas, Efstratios</creatorcontrib><title>Fully Solution-Processed Transparent Artificial Neural Network Using Drop-On-Demand Electrohydrodynamic Printing</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Artificial neural networks (ANN), deep learning, and neuromorphic systems are exciting new processing architectures being used to implement a wide variety of intelligent and adaptive systems. To date, these architectures have been primarily realized using traditional complementary metal–oxide–semiconductor (CMOS) processes or otherwise conventional semiconductor fabrication processes. Thus, the high cost associated with the design and fabrication of these circuits has limited the broader scientific community from applying new ideas, and arguably, has slowed research progress in this exciting new area. Solution-processed electronics offer an attractive option for providing low-cost rapid prototyping of neuromorphic devices. This article proposes a novel, wholly solution-based process used to produce low-cost transparent synaptic transistors capable of emulating biological synaptic functioning and thus used to construct ANN. We have demonstrated the fabrication process by constructing an ANN that encodes and decodes a 100 × 100 pixel image. Here, the synaptic weights were configured to achieve the desired image processing functions.</description><subject>electronics</subject><subject>image analysis</subject><subject>neural networks</subject><subject>transistors</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkUtLxDAUhYMoOj62LqVLETrm0TbtUuahgqjgzLqkya1G26QmLdJ_b3RGd4KrcxbfOVzuQeiU4CnBlFwK6UWrp0WFaZKlO2hCiiSJc5rS3V-fJAfo0PtXjDNGcbqPDhjBmGOSTFC3HJpmjJ5sM_TamvjRWQneg4pWThjfCQemj65cr2sttWiiexjct_Qf1r1Fa6_NczR3tosfTDyHVhgVLRqQvbMvo3JWjSYcKKNHp00f2GO0V4vGw8lWj9B6uVjNbuK7h-vb2dVdLFjG-jiXKmeY8hSy4IhQVVbkNS-gUpzxgoDIakESmRIghFYYoOLAa8AZMFkpwo7Q-aa3c_Z9AN-XrfYSmkYYsIMvKc2zgnLM_oMSykla5Cyg0w0qnfXeQV12TrfCjSXB5dcg5WaQcjtICJxtu4eqBfWL_ywQgIsNEILlqx2cCV_5q-0TwLOXvA</recordid><startdate>20190515</startdate><enddate>20190515</enddate><creator>Yong, Jason</creator><creator>Liang, You</creator><creator>Yu, Yang</creator><creator>Hassan, Basem</creator><creator>Hossain, Md Sharafat</creator><creator>Ganesan, Kumaravelu</creator><creator>Unnithan, Ranjith Rajasekharan</creator><creator>Evans, Robin</creator><creator>Egan, Gary</creator><creator>Chana, Gursharan</creator><creator>Nasr, Babak</creator><creator>Skafidas, Efstratios</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-5966-5280</orcidid><orcidid>https://orcid.org/0000-0003-0168-5665</orcidid></search><sort><creationdate>20190515</creationdate><title>Fully Solution-Processed Transparent Artificial Neural Network Using Drop-On-Demand Electrohydrodynamic Printing</title><author>Yong, Jason ; Liang, You ; Yu, Yang ; Hassan, Basem ; Hossain, Md Sharafat ; Ganesan, Kumaravelu ; Unnithan, Ranjith Rajasekharan ; Evans, Robin ; Egan, Gary ; Chana, Gursharan ; Nasr, Babak ; Skafidas, Efstratios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a363t-8cd830275e6cd81adb698f79ebd73791ea6fa14c51e112b0eeb7e7fe06e3cbd13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>electronics</topic><topic>image analysis</topic><topic>neural networks</topic><topic>transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yong, Jason</creatorcontrib><creatorcontrib>Liang, You</creatorcontrib><creatorcontrib>Yu, Yang</creatorcontrib><creatorcontrib>Hassan, Basem</creatorcontrib><creatorcontrib>Hossain, Md Sharafat</creatorcontrib><creatorcontrib>Ganesan, Kumaravelu</creatorcontrib><creatorcontrib>Unnithan, Ranjith Rajasekharan</creatorcontrib><creatorcontrib>Evans, Robin</creatorcontrib><creatorcontrib>Egan, Gary</creatorcontrib><creatorcontrib>Chana, Gursharan</creatorcontrib><creatorcontrib>Nasr, Babak</creatorcontrib><creatorcontrib>Skafidas, Efstratios</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yong, Jason</au><au>Liang, You</au><au>Yu, Yang</au><au>Hassan, Basem</au><au>Hossain, Md Sharafat</au><au>Ganesan, Kumaravelu</au><au>Unnithan, Ranjith Rajasekharan</au><au>Evans, Robin</au><au>Egan, Gary</au><au>Chana, Gursharan</au><au>Nasr, Babak</au><au>Skafidas, Efstratios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fully Solution-Processed Transparent Artificial Neural Network Using Drop-On-Demand Electrohydrodynamic Printing</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2019-05-15</date><risdate>2019</risdate><volume>11</volume><issue>19</issue><spage>17521</spage><epage>17530</epage><pages>17521-17530</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>Artificial neural networks (ANN), deep learning, and neuromorphic systems are exciting new processing architectures being used to implement a wide variety of intelligent and adaptive systems. To date, these architectures have been primarily realized using traditional complementary metal–oxide–semiconductor (CMOS) processes or otherwise conventional semiconductor fabrication processes. Thus, the high cost associated with the design and fabrication of these circuits has limited the broader scientific community from applying new ideas, and arguably, has slowed research progress in this exciting new area. Solution-processed electronics offer an attractive option for providing low-cost rapid prototyping of neuromorphic devices. This article proposes a novel, wholly solution-based process used to produce low-cost transparent synaptic transistors capable of emulating biological synaptic functioning and thus used to construct ANN. We have demonstrated the fabrication process by constructing an ANN that encodes and decodes a 100 × 100 pixel image. Here, the synaptic weights were configured to achieve the desired image processing functions.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31007014</pmid><doi>10.1021/acsami.9b02465</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5966-5280</orcidid><orcidid>https://orcid.org/0000-0003-0168-5665</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2019-05, Vol.11 (19), p.17521-17530
issn 1944-8244
1944-8252
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2286927031
source ACS Publications
subjects electronics
image analysis
neural networks
transistors
title Fully Solution-Processed Transparent Artificial Neural Network Using Drop-On-Demand Electrohydrodynamic Printing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T16%3A19%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fully%20Solution-Processed%20Transparent%20Artificial%20Neural%20Network%20Using%20Drop-On-Demand%20Electrohydrodynamic%20Printing&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Yong,%20Jason&rft.date=2019-05-15&rft.volume=11&rft.issue=19&rft.spage=17521&rft.epage=17530&rft.pages=17521-17530&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.9b02465&rft_dat=%3Cproquest_cross%3E2286927031%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2212715983&rft_id=info:pmid/31007014&rfr_iscdi=true