Fully Solution-Processed Transparent Artificial Neural Network Using Drop-On-Demand Electrohydrodynamic Printing
Artificial neural networks (ANN), deep learning, and neuromorphic systems are exciting new processing architectures being used to implement a wide variety of intelligent and adaptive systems. To date, these architectures have been primarily realized using traditional complementary metal–oxide–semico...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2019-05, Vol.11 (19), p.17521-17530 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17530 |
---|---|
container_issue | 19 |
container_start_page | 17521 |
container_title | ACS applied materials & interfaces |
container_volume | 11 |
creator | Yong, Jason Liang, You Yu, Yang Hassan, Basem Hossain, Md Sharafat Ganesan, Kumaravelu Unnithan, Ranjith Rajasekharan Evans, Robin Egan, Gary Chana, Gursharan Nasr, Babak Skafidas, Efstratios |
description | Artificial neural networks (ANN), deep learning, and neuromorphic systems are exciting new processing architectures being used to implement a wide variety of intelligent and adaptive systems. To date, these architectures have been primarily realized using traditional complementary metal–oxide–semiconductor (CMOS) processes or otherwise conventional semiconductor fabrication processes. Thus, the high cost associated with the design and fabrication of these circuits has limited the broader scientific community from applying new ideas, and arguably, has slowed research progress in this exciting new area. Solution-processed electronics offer an attractive option for providing low-cost rapid prototyping of neuromorphic devices. This article proposes a novel, wholly solution-based process used to produce low-cost transparent synaptic transistors capable of emulating biological synaptic functioning and thus used to construct ANN. We have demonstrated the fabrication process by constructing an ANN that encodes and decodes a 100 × 100 pixel image. Here, the synaptic weights were configured to achieve the desired image processing functions. |
doi_str_mv | 10.1021/acsami.9b02465 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2286927031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2286927031</sourcerecordid><originalsourceid>FETCH-LOGICAL-a363t-8cd830275e6cd81adb698f79ebd73791ea6fa14c51e112b0eeb7e7fe06e3cbd13</originalsourceid><addsrcrecordid>eNqNkUtLxDAUhYMoOj62LqVLETrm0TbtUuahgqjgzLqkya1G26QmLdJ_b3RGd4KrcxbfOVzuQeiU4CnBlFwK6UWrp0WFaZKlO2hCiiSJc5rS3V-fJAfo0PtXjDNGcbqPDhjBmGOSTFC3HJpmjJ5sM_TamvjRWQneg4pWThjfCQemj65cr2sttWiiexjct_Qf1r1Fa6_NczR3tosfTDyHVhgVLRqQvbMvo3JWjSYcKKNHp00f2GO0V4vGw8lWj9B6uVjNbuK7h-vb2dVdLFjG-jiXKmeY8hSy4IhQVVbkNS-gUpzxgoDIakESmRIghFYYoOLAa8AZMFkpwo7Q-aa3c_Z9AN-XrfYSmkYYsIMvKc2zgnLM_oMSykla5Cyg0w0qnfXeQV12TrfCjSXB5dcg5WaQcjtICJxtu4eqBfWL_ywQgIsNEILlqx2cCV_5q-0TwLOXvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2212715983</pqid></control><display><type>article</type><title>Fully Solution-Processed Transparent Artificial Neural Network Using Drop-On-Demand Electrohydrodynamic Printing</title><source>ACS Publications</source><creator>Yong, Jason ; Liang, You ; Yu, Yang ; Hassan, Basem ; Hossain, Md Sharafat ; Ganesan, Kumaravelu ; Unnithan, Ranjith Rajasekharan ; Evans, Robin ; Egan, Gary ; Chana, Gursharan ; Nasr, Babak ; Skafidas, Efstratios</creator><creatorcontrib>Yong, Jason ; Liang, You ; Yu, Yang ; Hassan, Basem ; Hossain, Md Sharafat ; Ganesan, Kumaravelu ; Unnithan, Ranjith Rajasekharan ; Evans, Robin ; Egan, Gary ; Chana, Gursharan ; Nasr, Babak ; Skafidas, Efstratios</creatorcontrib><description>Artificial neural networks (ANN), deep learning, and neuromorphic systems are exciting new processing architectures being used to implement a wide variety of intelligent and adaptive systems. To date, these architectures have been primarily realized using traditional complementary metal–oxide–semiconductor (CMOS) processes or otherwise conventional semiconductor fabrication processes. Thus, the high cost associated with the design and fabrication of these circuits has limited the broader scientific community from applying new ideas, and arguably, has slowed research progress in this exciting new area. Solution-processed electronics offer an attractive option for providing low-cost rapid prototyping of neuromorphic devices. This article proposes a novel, wholly solution-based process used to produce low-cost transparent synaptic transistors capable of emulating biological synaptic functioning and thus used to construct ANN. We have demonstrated the fabrication process by constructing an ANN that encodes and decodes a 100 × 100 pixel image. Here, the synaptic weights were configured to achieve the desired image processing functions.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.9b02465</identifier><identifier>PMID: 31007014</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>electronics ; image analysis ; neural networks ; transistors</subject><ispartof>ACS applied materials & interfaces, 2019-05, Vol.11 (19), p.17521-17530</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a363t-8cd830275e6cd81adb698f79ebd73791ea6fa14c51e112b0eeb7e7fe06e3cbd13</citedby><cites>FETCH-LOGICAL-a363t-8cd830275e6cd81adb698f79ebd73791ea6fa14c51e112b0eeb7e7fe06e3cbd13</cites><orcidid>0000-0002-5966-5280 ; 0000-0003-0168-5665</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.9b02465$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.9b02465$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31007014$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yong, Jason</creatorcontrib><creatorcontrib>Liang, You</creatorcontrib><creatorcontrib>Yu, Yang</creatorcontrib><creatorcontrib>Hassan, Basem</creatorcontrib><creatorcontrib>Hossain, Md Sharafat</creatorcontrib><creatorcontrib>Ganesan, Kumaravelu</creatorcontrib><creatorcontrib>Unnithan, Ranjith Rajasekharan</creatorcontrib><creatorcontrib>Evans, Robin</creatorcontrib><creatorcontrib>Egan, Gary</creatorcontrib><creatorcontrib>Chana, Gursharan</creatorcontrib><creatorcontrib>Nasr, Babak</creatorcontrib><creatorcontrib>Skafidas, Efstratios</creatorcontrib><title>Fully Solution-Processed Transparent Artificial Neural Network Using Drop-On-Demand Electrohydrodynamic Printing</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Artificial neural networks (ANN), deep learning, and neuromorphic systems are exciting new processing architectures being used to implement a wide variety of intelligent and adaptive systems. To date, these architectures have been primarily realized using traditional complementary metal–oxide–semiconductor (CMOS) processes or otherwise conventional semiconductor fabrication processes. Thus, the high cost associated with the design and fabrication of these circuits has limited the broader scientific community from applying new ideas, and arguably, has slowed research progress in this exciting new area. Solution-processed electronics offer an attractive option for providing low-cost rapid prototyping of neuromorphic devices. This article proposes a novel, wholly solution-based process used to produce low-cost transparent synaptic transistors capable of emulating biological synaptic functioning and thus used to construct ANN. We have demonstrated the fabrication process by constructing an ANN that encodes and decodes a 100 × 100 pixel image. Here, the synaptic weights were configured to achieve the desired image processing functions.</description><subject>electronics</subject><subject>image analysis</subject><subject>neural networks</subject><subject>transistors</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkUtLxDAUhYMoOj62LqVLETrm0TbtUuahgqjgzLqkya1G26QmLdJ_b3RGd4KrcxbfOVzuQeiU4CnBlFwK6UWrp0WFaZKlO2hCiiSJc5rS3V-fJAfo0PtXjDNGcbqPDhjBmGOSTFC3HJpmjJ5sM_TamvjRWQneg4pWThjfCQemj65cr2sttWiiexjct_Qf1r1Fa6_NczR3tosfTDyHVhgVLRqQvbMvo3JWjSYcKKNHp00f2GO0V4vGw8lWj9B6uVjNbuK7h-vb2dVdLFjG-jiXKmeY8hSy4IhQVVbkNS-gUpzxgoDIakESmRIghFYYoOLAa8AZMFkpwo7Q-aa3c_Z9AN-XrfYSmkYYsIMvKc2zgnLM_oMSykla5Cyg0w0qnfXeQV12TrfCjSXB5dcg5WaQcjtICJxtu4eqBfWL_ywQgIsNEILlqx2cCV_5q-0TwLOXvA</recordid><startdate>20190515</startdate><enddate>20190515</enddate><creator>Yong, Jason</creator><creator>Liang, You</creator><creator>Yu, Yang</creator><creator>Hassan, Basem</creator><creator>Hossain, Md Sharafat</creator><creator>Ganesan, Kumaravelu</creator><creator>Unnithan, Ranjith Rajasekharan</creator><creator>Evans, Robin</creator><creator>Egan, Gary</creator><creator>Chana, Gursharan</creator><creator>Nasr, Babak</creator><creator>Skafidas, Efstratios</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-5966-5280</orcidid><orcidid>https://orcid.org/0000-0003-0168-5665</orcidid></search><sort><creationdate>20190515</creationdate><title>Fully Solution-Processed Transparent Artificial Neural Network Using Drop-On-Demand Electrohydrodynamic Printing</title><author>Yong, Jason ; Liang, You ; Yu, Yang ; Hassan, Basem ; Hossain, Md Sharafat ; Ganesan, Kumaravelu ; Unnithan, Ranjith Rajasekharan ; Evans, Robin ; Egan, Gary ; Chana, Gursharan ; Nasr, Babak ; Skafidas, Efstratios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a363t-8cd830275e6cd81adb698f79ebd73791ea6fa14c51e112b0eeb7e7fe06e3cbd13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>electronics</topic><topic>image analysis</topic><topic>neural networks</topic><topic>transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yong, Jason</creatorcontrib><creatorcontrib>Liang, You</creatorcontrib><creatorcontrib>Yu, Yang</creatorcontrib><creatorcontrib>Hassan, Basem</creatorcontrib><creatorcontrib>Hossain, Md Sharafat</creatorcontrib><creatorcontrib>Ganesan, Kumaravelu</creatorcontrib><creatorcontrib>Unnithan, Ranjith Rajasekharan</creatorcontrib><creatorcontrib>Evans, Robin</creatorcontrib><creatorcontrib>Egan, Gary</creatorcontrib><creatorcontrib>Chana, Gursharan</creatorcontrib><creatorcontrib>Nasr, Babak</creatorcontrib><creatorcontrib>Skafidas, Efstratios</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yong, Jason</au><au>Liang, You</au><au>Yu, Yang</au><au>Hassan, Basem</au><au>Hossain, Md Sharafat</au><au>Ganesan, Kumaravelu</au><au>Unnithan, Ranjith Rajasekharan</au><au>Evans, Robin</au><au>Egan, Gary</au><au>Chana, Gursharan</au><au>Nasr, Babak</au><au>Skafidas, Efstratios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fully Solution-Processed Transparent Artificial Neural Network Using Drop-On-Demand Electrohydrodynamic Printing</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2019-05-15</date><risdate>2019</risdate><volume>11</volume><issue>19</issue><spage>17521</spage><epage>17530</epage><pages>17521-17530</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>Artificial neural networks (ANN), deep learning, and neuromorphic systems are exciting new processing architectures being used to implement a wide variety of intelligent and adaptive systems. To date, these architectures have been primarily realized using traditional complementary metal–oxide–semiconductor (CMOS) processes or otherwise conventional semiconductor fabrication processes. Thus, the high cost associated with the design and fabrication of these circuits has limited the broader scientific community from applying new ideas, and arguably, has slowed research progress in this exciting new area. Solution-processed electronics offer an attractive option for providing low-cost rapid prototyping of neuromorphic devices. This article proposes a novel, wholly solution-based process used to produce low-cost transparent synaptic transistors capable of emulating biological synaptic functioning and thus used to construct ANN. We have demonstrated the fabrication process by constructing an ANN that encodes and decodes a 100 × 100 pixel image. Here, the synaptic weights were configured to achieve the desired image processing functions.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31007014</pmid><doi>10.1021/acsami.9b02465</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5966-5280</orcidid><orcidid>https://orcid.org/0000-0003-0168-5665</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2019-05, Vol.11 (19), p.17521-17530 |
issn | 1944-8244 1944-8252 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2286927031 |
source | ACS Publications |
subjects | electronics image analysis neural networks transistors |
title | Fully Solution-Processed Transparent Artificial Neural Network Using Drop-On-Demand Electrohydrodynamic Printing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T16%3A19%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fully%20Solution-Processed%20Transparent%20Artificial%20Neural%20Network%20Using%20Drop-On-Demand%20Electrohydrodynamic%20Printing&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Yong,%20Jason&rft.date=2019-05-15&rft.volume=11&rft.issue=19&rft.spage=17521&rft.epage=17530&rft.pages=17521-17530&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.9b02465&rft_dat=%3Cproquest_cross%3E2286927031%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2212715983&rft_id=info:pmid/31007014&rfr_iscdi=true |