Numerical comparison of kalman filter algorithms: Orbit determination case study
Numerical characteristics of various Kalman filter algorithms are illustrated with a realistic orbit determination study. The case study of this paper highlights the numerical deficiencies of the conventional and stabilized Kalman algorithms. Computational errors associated with these algorithms are...
Gespeichert in:
Veröffentlicht in: | Automatica (Oxford) 1977, Vol.13 (1), p.23-35 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 35 |
---|---|
container_issue | 1 |
container_start_page | 23 |
container_title | Automatica (Oxford) |
container_volume | 13 |
creator | Bierman, Gerald J. Thornton, Catherine L. |
description | Numerical characteristics of various Kalman filter algorithms are illustrated with a realistic orbit determination study. The case study of this paper highlights the numerical deficiencies of the conventional and stabilized Kalman algorithms. Computational errors associated with these algorithms are found to be so large as to obscure important mismodeling effects and thus cause misleading estimates of filter accuracy. The positive result of this study is that the
U-D covariance factorization algorithm has excellent numerical properties and is computationally efficient, having CPU costs that differ negligibly from the conventional Kalman costs. Accuracies of the
U-D filter using single precision arithmetic consistently match the double precision reference results. Numerical stability of the
U-D filter is further demonstrated by its insensitivity to variations in the
a priori statistics. |
doi_str_mv | 10.1016/0005-1098(77)90006-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_22867109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0005109877900061</els_id><sourcerecordid>22867109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-825f8503170c5125b7854891d6f083d555b268d4b1028bce4882c113fceb40333</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AxdZiS6qeTRNxoUggy8YHBe6Dml6q9G2GZNUmH9vxhGXri7ncs6B8yF0TMk5JbS6IISIgpKZOpXybJZVVdAdNKFK8oIpXu2iyZ9lHx3E-J5lSRWboKfHsYfgrOmw9f3KBBf9gH2LP0zXmwG3rksQsOlefXDprY-XeBlql3AD-d-7wSSXA9ZEwDGNzfoQ7bWmi3D0e6fo5fbmeX5fLJZ3D_PrRWE5F6lQTLRKEE4lsYIyUUslSjWjTdUSxRshRM0q1ZQ1JUzVFkqlmKWUtxbqknDOp-hk27sK_nOEmHTvooWuMwP4MWrGVCXz4Gwst0YbfIwBWr0KrjdhrSnRG3x6w0Zv2Ggp9Q8-TXPsahuDPOLLQdDROhgsNC6ATbrx7v-Cb3CRdgE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>22867109</pqid></control><display><type>article</type><title>Numerical comparison of kalman filter algorithms: Orbit determination case study</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Bierman, Gerald J. ; Thornton, Catherine L.</creator><creatorcontrib>Bierman, Gerald J. ; Thornton, Catherine L.</creatorcontrib><description>Numerical characteristics of various Kalman filter algorithms are illustrated with a realistic orbit determination study. The case study of this paper highlights the numerical deficiencies of the conventional and stabilized Kalman algorithms. Computational errors associated with these algorithms are found to be so large as to obscure important mismodeling effects and thus cause misleading estimates of filter accuracy. The positive result of this study is that the
U-D covariance factorization algorithm has excellent numerical properties and is computationally efficient, having CPU costs that differ negligibly from the conventional Kalman costs. Accuracies of the
U-D filter using single precision arithmetic consistently match the double precision reference results. Numerical stability of the
U-D filter is further demonstrated by its insensitivity to variations in the
a priori statistics.</description><identifier>ISSN: 0005-1098</identifier><identifier>EISSN: 1873-2836</identifier><identifier>DOI: 10.1016/0005-1098(77)90006-1</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>computational methods ; computer software ; data processing ; discrete systems ; Filtering ; Kalman filters ; optimal filtering ; space vehicles ; state estimation ; stochastic systems</subject><ispartof>Automatica (Oxford), 1977, Vol.13 (1), p.23-35</ispartof><rights>1977</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-825f8503170c5125b7854891d6f083d555b268d4b1028bce4882c113fceb40333</citedby><cites>FETCH-LOGICAL-c335t-825f8503170c5125b7854891d6f083d555b268d4b1028bce4882c113fceb40333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/0005109877900061$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Bierman, Gerald J.</creatorcontrib><creatorcontrib>Thornton, Catherine L.</creatorcontrib><title>Numerical comparison of kalman filter algorithms: Orbit determination case study</title><title>Automatica (Oxford)</title><description>Numerical characteristics of various Kalman filter algorithms are illustrated with a realistic orbit determination study. The case study of this paper highlights the numerical deficiencies of the conventional and stabilized Kalman algorithms. Computational errors associated with these algorithms are found to be so large as to obscure important mismodeling effects and thus cause misleading estimates of filter accuracy. The positive result of this study is that the
U-D covariance factorization algorithm has excellent numerical properties and is computationally efficient, having CPU costs that differ negligibly from the conventional Kalman costs. Accuracies of the
U-D filter using single precision arithmetic consistently match the double precision reference results. Numerical stability of the
U-D filter is further demonstrated by its insensitivity to variations in the
a priori statistics.</description><subject>computational methods</subject><subject>computer software</subject><subject>data processing</subject><subject>discrete systems</subject><subject>Filtering</subject><subject>Kalman filters</subject><subject>optimal filtering</subject><subject>space vehicles</subject><subject>state estimation</subject><subject>stochastic systems</subject><issn>0005-1098</issn><issn>1873-2836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1977</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AxdZiS6qeTRNxoUggy8YHBe6Dml6q9G2GZNUmH9vxhGXri7ncs6B8yF0TMk5JbS6IISIgpKZOpXybJZVVdAdNKFK8oIpXu2iyZ9lHx3E-J5lSRWboKfHsYfgrOmw9f3KBBf9gH2LP0zXmwG3rksQsOlefXDprY-XeBlql3AD-d-7wSSXA9ZEwDGNzfoQ7bWmi3D0e6fo5fbmeX5fLJZ3D_PrRWE5F6lQTLRKEE4lsYIyUUslSjWjTdUSxRshRM0q1ZQ1JUzVFkqlmKWUtxbqknDOp-hk27sK_nOEmHTvooWuMwP4MWrGVCXz4Gwst0YbfIwBWr0KrjdhrSnRG3x6w0Zv2Ggp9Q8-TXPsahuDPOLLQdDROhgsNC6ATbrx7v-Cb3CRdgE</recordid><startdate>1977</startdate><enddate>1977</enddate><creator>Bierman, Gerald J.</creator><creator>Thornton, Catherine L.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>1977</creationdate><title>Numerical comparison of kalman filter algorithms: Orbit determination case study</title><author>Bierman, Gerald J. ; Thornton, Catherine L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-825f8503170c5125b7854891d6f083d555b268d4b1028bce4882c113fceb40333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1977</creationdate><topic>computational methods</topic><topic>computer software</topic><topic>data processing</topic><topic>discrete systems</topic><topic>Filtering</topic><topic>Kalman filters</topic><topic>optimal filtering</topic><topic>space vehicles</topic><topic>state estimation</topic><topic>stochastic systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bierman, Gerald J.</creatorcontrib><creatorcontrib>Thornton, Catherine L.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Automatica (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bierman, Gerald J.</au><au>Thornton, Catherine L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical comparison of kalman filter algorithms: Orbit determination case study</atitle><jtitle>Automatica (Oxford)</jtitle><date>1977</date><risdate>1977</risdate><volume>13</volume><issue>1</issue><spage>23</spage><epage>35</epage><pages>23-35</pages><issn>0005-1098</issn><eissn>1873-2836</eissn><abstract>Numerical characteristics of various Kalman filter algorithms are illustrated with a realistic orbit determination study. The case study of this paper highlights the numerical deficiencies of the conventional and stabilized Kalman algorithms. Computational errors associated with these algorithms are found to be so large as to obscure important mismodeling effects and thus cause misleading estimates of filter accuracy. The positive result of this study is that the
U-D covariance factorization algorithm has excellent numerical properties and is computationally efficient, having CPU costs that differ negligibly from the conventional Kalman costs. Accuracies of the
U-D filter using single precision arithmetic consistently match the double precision reference results. Numerical stability of the
U-D filter is further demonstrated by its insensitivity to variations in the
a priori statistics.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/0005-1098(77)90006-1</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0005-1098 |
ispartof | Automatica (Oxford), 1977, Vol.13 (1), p.23-35 |
issn | 0005-1098 1873-2836 |
language | eng |
recordid | cdi_proquest_miscellaneous_22867109 |
source | Elsevier ScienceDirect Journals Complete |
subjects | computational methods computer software data processing discrete systems Filtering Kalman filters optimal filtering space vehicles state estimation stochastic systems |
title | Numerical comparison of kalman filter algorithms: Orbit determination case study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T21%3A43%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20comparison%20of%20kalman%20filter%20algorithms:%20Orbit%20determination%20case%20study&rft.jtitle=Automatica%20(Oxford)&rft.au=Bierman,%20Gerald%20J.&rft.date=1977&rft.volume=13&rft.issue=1&rft.spage=23&rft.epage=35&rft.pages=23-35&rft.issn=0005-1098&rft.eissn=1873-2836&rft_id=info:doi/10.1016/0005-1098(77)90006-1&rft_dat=%3Cproquest_cross%3E22867109%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=22867109&rft_id=info:pmid/&rft_els_id=0005109877900061&rfr_iscdi=true |