The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape

Enzymes that catalyse CpG methylation in DNA, including the DNA methyltransferases 1 (DNMT1), 3A (DNMT3A) and 3B (DNMT3B), are indispensable for mammalian tissue development and homeostasis 1 – 4 . They are also implicated in human developmental disorders and cancers 5 – 8 , supporting the critical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2019-09, Vol.573 (7773), p.281-286
Hauptverfasser: Weinberg, Daniel N., Papillon-Cavanagh, Simon, Chen, Haifen, Yue, Yuan, Chen, Xiao, Rajagopalan, Kartik N., Horth, Cynthia, McGuire, John T., Xu, Xinjing, Nikbakht, Hamid, Lemiesz, Agata E., Marchione, Dylan M., Marunde, Matthew R., Meiners, Matthew J., Cheek, Marcus A., Keogh, Michael-Christopher, Bareke, Eric, Djedid, Anissa, Harutyunyan, Ashot S., Jabado, Nada, Garcia, Benjamin A., Li, Haitao, Allis, C. David, Majewski, Jacek, Lu, Chao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 286
container_issue 7773
container_start_page 281
container_title Nature (London)
container_volume 573
creator Weinberg, Daniel N.
Papillon-Cavanagh, Simon
Chen, Haifen
Yue, Yuan
Chen, Xiao
Rajagopalan, Kartik N.
Horth, Cynthia
McGuire, John T.
Xu, Xinjing
Nikbakht, Hamid
Lemiesz, Agata E.
Marchione, Dylan M.
Marunde, Matthew R.
Meiners, Matthew J.
Cheek, Marcus A.
Keogh, Michael-Christopher
Bareke, Eric
Djedid, Anissa
Harutyunyan, Ashot S.
Jabado, Nada
Garcia, Benjamin A.
Li, Haitao
Allis, C. David
Majewski, Jacek
Lu, Chao
description Enzymes that catalyse CpG methylation in DNA, including the DNA methyltransferases 1 (DNMT1), 3A (DNMT3A) and 3B (DNMT3B), are indispensable for mammalian tissue development and homeostasis 1 – 4 . They are also implicated in human developmental disorders and cancers 5 – 8 , supporting the critical role of DNA methylation in the specification and maintenance of cell fate. Previous studies have suggested that post-translational modifications of histones are involved in specifying patterns of DNA methyltransferase localization and DNA methylation at promoters and actively transcribed gene bodies 9 – 11 . However, the mechanisms that control the establishment and maintenance of intergenic DNA methylation remain poorly understood. Tatton–Brown–Rahman syndrome (TBRS) is a childhood overgrowth disorder that is defined by germline mutations in DNMT3A . TBRS shares clinical features with Sotos syndrome (which is caused by haploinsufficiency of NSD1 , a histone methyltransferase that catalyses the dimethylation of histone H3 at K36 (H3K36me2) 8 , 12 , 13 ), which suggests that there is a mechanistic link between these two diseases. Here we report that NSD1-mediated H3K36me2 is required for the recruitment of DNMT3A and maintenance of DNA methylation at intergenic regions. Genome-wide analysis shows that the binding and activity of DNMT3A colocalize with H3K36me2 at non-coding regions of euchromatin. Genetic ablation of Nsd1 and its paralogue Nsd2 in mouse cells results in a redistribution of DNMT3A to H3K36me3-modified gene bodies and a reduction in the methylation of intergenic DNA. Blood samples from patients with Sotos syndrome and  NSD1 -mutant tumours also exhibit hypomethylation of intergenic DNA. The PWWP domain of DNMT3A shows dual recognition of H3K36me2 and H3K36me3 in vitro, with a higher binding affinity towards H3K36me2 that is abrogated by TBRS-derived missense mutations. Together, our study reveals a trans -chromatin regulatory pathway that connects aberrant intergenic CpG methylation to human neoplastic and developmental overgrowth. H3K36me2 targets DNMT3A to intergenic regions and this process, together with H3K36me3-mediated recruitment of DNMT3B, has a key role in establishing and maintaining genomic DNA methylation landscapes.
doi_str_mv 10.1038/s41586-019-1534-3
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2285111819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A602150529</galeid><sourcerecordid>A602150529</sourcerecordid><originalsourceid>FETCH-LOGICAL-c684t-3e8e4f6bb54aef13120169200c54bf42baf7f6b97c880fe242d81ad3ba1cef103</originalsourceid><addsrcrecordid>eNp10stu1DAUBmALgei08ABskAUbWKT4mjjLUbm0ooAEwxJZjudkxiWXqe1I7dtzRlMogwZlESn-zi_r5CfkGWennEnzJimuTVkwXhdcS1XIB2TGVVUWqjTVQzJjTJiCGVkekeOUrhhjmlfqMTmSXBnNKjMjPxZroOuQ8jgA7V38Sc_lR1n2IGgEH6eQE337-dNCzqkbljSt3QYSzTgUhgxxBUPwCOa0h7y-7VwO40A7pMmjfEIeta5L8PTufUK-v3-3ODsvLr98uDibXxa-NCoXEgyotmwarRy0XHLBeFkLxrxWTatE49oKj-vKG8NaEEosDXdL2Tju0TN5Ql7tcjdxvJ4gZduH5KHDi8A4JSuE0Zxzw2ukL_-hV-MUB7wdqlrW2ghW3auV68CGoR1zdH4bauclE1wzLbZZxQGFO4HoOlxoG_Dznn9xwPtNuLZ_o9MDCJ8l9MEfTH29N4Amw01euSkle_Ht677lO-vjmFKE1m5iwN9-azmz207ZXacsdspuO2Ulzjy_29jU9LD8M_G7RAjEDiQ8GlYQ71f6_9RfRHfQng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2293958207</pqid></control><display><type>article</type><title>The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape</title><source>MEDLINE</source><source>SpringerLink Journals (MCLS)</source><source>Nature</source><creator>Weinberg, Daniel N. ; Papillon-Cavanagh, Simon ; Chen, Haifen ; Yue, Yuan ; Chen, Xiao ; Rajagopalan, Kartik N. ; Horth, Cynthia ; McGuire, John T. ; Xu, Xinjing ; Nikbakht, Hamid ; Lemiesz, Agata E. ; Marchione, Dylan M. ; Marunde, Matthew R. ; Meiners, Matthew J. ; Cheek, Marcus A. ; Keogh, Michael-Christopher ; Bareke, Eric ; Djedid, Anissa ; Harutyunyan, Ashot S. ; Jabado, Nada ; Garcia, Benjamin A. ; Li, Haitao ; Allis, C. David ; Majewski, Jacek ; Lu, Chao</creator><creatorcontrib>Weinberg, Daniel N. ; Papillon-Cavanagh, Simon ; Chen, Haifen ; Yue, Yuan ; Chen, Xiao ; Rajagopalan, Kartik N. ; Horth, Cynthia ; McGuire, John T. ; Xu, Xinjing ; Nikbakht, Hamid ; Lemiesz, Agata E. ; Marchione, Dylan M. ; Marunde, Matthew R. ; Meiners, Matthew J. ; Cheek, Marcus A. ; Keogh, Michael-Christopher ; Bareke, Eric ; Djedid, Anissa ; Harutyunyan, Ashot S. ; Jabado, Nada ; Garcia, Benjamin A. ; Li, Haitao ; Allis, C. David ; Majewski, Jacek ; Lu, Chao</creatorcontrib><description>Enzymes that catalyse CpG methylation in DNA, including the DNA methyltransferases 1 (DNMT1), 3A (DNMT3A) and 3B (DNMT3B), are indispensable for mammalian tissue development and homeostasis 1 – 4 . They are also implicated in human developmental disorders and cancers 5 – 8 , supporting the critical role of DNA methylation in the specification and maintenance of cell fate. Previous studies have suggested that post-translational modifications of histones are involved in specifying patterns of DNA methyltransferase localization and DNA methylation at promoters and actively transcribed gene bodies 9 – 11 . However, the mechanisms that control the establishment and maintenance of intergenic DNA methylation remain poorly understood. Tatton–Brown–Rahman syndrome (TBRS) is a childhood overgrowth disorder that is defined by germline mutations in DNMT3A . TBRS shares clinical features with Sotos syndrome (which is caused by haploinsufficiency of NSD1 , a histone methyltransferase that catalyses the dimethylation of histone H3 at K36 (H3K36me2) 8 , 12 , 13 ), which suggests that there is a mechanistic link between these two diseases. Here we report that NSD1-mediated H3K36me2 is required for the recruitment of DNMT3A and maintenance of DNA methylation at intergenic regions. Genome-wide analysis shows that the binding and activity of DNMT3A colocalize with H3K36me2 at non-coding regions of euchromatin. Genetic ablation of Nsd1 and its paralogue Nsd2 in mouse cells results in a redistribution of DNMT3A to H3K36me3-modified gene bodies and a reduction in the methylation of intergenic DNA. Blood samples from patients with Sotos syndrome and  NSD1 -mutant tumours also exhibit hypomethylation of intergenic DNA. The PWWP domain of DNMT3A shows dual recognition of H3K36me2 and H3K36me3 in vitro, with a higher binding affinity towards H3K36me2 that is abrogated by TBRS-derived missense mutations. Together, our study reveals a trans -chromatin regulatory pathway that connects aberrant intergenic CpG methylation to human neoplastic and developmental overgrowth. H3K36me2 targets DNMT3A to intergenic regions and this process, together with H3K36me3-mediated recruitment of DNMT3B, has a key role in establishing and maintaining genomic DNA methylation landscapes.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-019-1534-3</identifier><identifier>PMID: 31485078</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>101/58 ; 13/106 ; 38/91 ; 42/41 ; 631/136/142 ; 631/1647/2210/2211 ; 631/208/176/1988 ; 631/337/100/2285 ; 631/67/1536 ; Ablation ; Analysis ; Animals ; Binding ; Bioinformatics ; Cell fate ; Cell Line ; Children ; Chromatin ; CpG islands ; Deoxyribonucleic acid ; Developmental disabilities ; DNA ; DNA (Cytosine-5-)-Methyltransferases - metabolism ; DNA Methylation ; DNA methyltransferase ; DNA, Intergenic - metabolism ; DNMT1 protein ; Euchromatin ; Gene expression ; Genome-Wide Association Study ; Genomes ; Genomics ; Growth Disorders - genetics ; Growth Disorders - physiopathology ; Haploinsufficiency ; Histone H3 ; Histone methyltransferase ; Histones ; Histones - metabolism ; Homeostasis ; Humanities and Social Sciences ; Humans ; Letter ; Localization ; Maintenance ; Mass spectrometry ; Methylation ; Methyltransferases ; Mice ; Missense mutation ; multidisciplinary ; Mutation ; Post-translation ; Post-translational modification ; Protein Binding ; Protein Domains ; Protein Transport ; Robinson, J ; Science ; Science (multidisciplinary) ; Scientific imaging ; Sotos Syndrome - genetics ; Sotos Syndrome - physiopathology ; Tumors</subject><ispartof>Nature (London), 2019-09, Vol.573 (7773), p.281-286</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>COPYRIGHT 2019 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Sep 12, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c684t-3e8e4f6bb54aef13120169200c54bf42baf7f6b97c880fe242d81ad3ba1cef103</citedby><cites>FETCH-LOGICAL-c684t-3e8e4f6bb54aef13120169200c54bf42baf7f6b97c880fe242d81ad3ba1cef103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-019-1534-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-019-1534-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31485078$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Weinberg, Daniel N.</creatorcontrib><creatorcontrib>Papillon-Cavanagh, Simon</creatorcontrib><creatorcontrib>Chen, Haifen</creatorcontrib><creatorcontrib>Yue, Yuan</creatorcontrib><creatorcontrib>Chen, Xiao</creatorcontrib><creatorcontrib>Rajagopalan, Kartik N.</creatorcontrib><creatorcontrib>Horth, Cynthia</creatorcontrib><creatorcontrib>McGuire, John T.</creatorcontrib><creatorcontrib>Xu, Xinjing</creatorcontrib><creatorcontrib>Nikbakht, Hamid</creatorcontrib><creatorcontrib>Lemiesz, Agata E.</creatorcontrib><creatorcontrib>Marchione, Dylan M.</creatorcontrib><creatorcontrib>Marunde, Matthew R.</creatorcontrib><creatorcontrib>Meiners, Matthew J.</creatorcontrib><creatorcontrib>Cheek, Marcus A.</creatorcontrib><creatorcontrib>Keogh, Michael-Christopher</creatorcontrib><creatorcontrib>Bareke, Eric</creatorcontrib><creatorcontrib>Djedid, Anissa</creatorcontrib><creatorcontrib>Harutyunyan, Ashot S.</creatorcontrib><creatorcontrib>Jabado, Nada</creatorcontrib><creatorcontrib>Garcia, Benjamin A.</creatorcontrib><creatorcontrib>Li, Haitao</creatorcontrib><creatorcontrib>Allis, C. David</creatorcontrib><creatorcontrib>Majewski, Jacek</creatorcontrib><creatorcontrib>Lu, Chao</creatorcontrib><title>The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Enzymes that catalyse CpG methylation in DNA, including the DNA methyltransferases 1 (DNMT1), 3A (DNMT3A) and 3B (DNMT3B), are indispensable for mammalian tissue development and homeostasis 1 – 4 . They are also implicated in human developmental disorders and cancers 5 – 8 , supporting the critical role of DNA methylation in the specification and maintenance of cell fate. Previous studies have suggested that post-translational modifications of histones are involved in specifying patterns of DNA methyltransferase localization and DNA methylation at promoters and actively transcribed gene bodies 9 – 11 . However, the mechanisms that control the establishment and maintenance of intergenic DNA methylation remain poorly understood. Tatton–Brown–Rahman syndrome (TBRS) is a childhood overgrowth disorder that is defined by germline mutations in DNMT3A . TBRS shares clinical features with Sotos syndrome (which is caused by haploinsufficiency of NSD1 , a histone methyltransferase that catalyses the dimethylation of histone H3 at K36 (H3K36me2) 8 , 12 , 13 ), which suggests that there is a mechanistic link between these two diseases. Here we report that NSD1-mediated H3K36me2 is required for the recruitment of DNMT3A and maintenance of DNA methylation at intergenic regions. Genome-wide analysis shows that the binding and activity of DNMT3A colocalize with H3K36me2 at non-coding regions of euchromatin. Genetic ablation of Nsd1 and its paralogue Nsd2 in mouse cells results in a redistribution of DNMT3A to H3K36me3-modified gene bodies and a reduction in the methylation of intergenic DNA. Blood samples from patients with Sotos syndrome and  NSD1 -mutant tumours also exhibit hypomethylation of intergenic DNA. The PWWP domain of DNMT3A shows dual recognition of H3K36me2 and H3K36me3 in vitro, with a higher binding affinity towards H3K36me2 that is abrogated by TBRS-derived missense mutations. Together, our study reveals a trans -chromatin regulatory pathway that connects aberrant intergenic CpG methylation to human neoplastic and developmental overgrowth. H3K36me2 targets DNMT3A to intergenic regions and this process, together with H3K36me3-mediated recruitment of DNMT3B, has a key role in establishing and maintaining genomic DNA methylation landscapes.</description><subject>101/58</subject><subject>13/106</subject><subject>38/91</subject><subject>42/41</subject><subject>631/136/142</subject><subject>631/1647/2210/2211</subject><subject>631/208/176/1988</subject><subject>631/337/100/2285</subject><subject>631/67/1536</subject><subject>Ablation</subject><subject>Analysis</subject><subject>Animals</subject><subject>Binding</subject><subject>Bioinformatics</subject><subject>Cell fate</subject><subject>Cell Line</subject><subject>Children</subject><subject>Chromatin</subject><subject>CpG islands</subject><subject>Deoxyribonucleic acid</subject><subject>Developmental disabilities</subject><subject>DNA</subject><subject>DNA (Cytosine-5-)-Methyltransferases - metabolism</subject><subject>DNA Methylation</subject><subject>DNA methyltransferase</subject><subject>DNA, Intergenic - metabolism</subject><subject>DNMT1 protein</subject><subject>Euchromatin</subject><subject>Gene expression</subject><subject>Genome-Wide Association Study</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Growth Disorders - genetics</subject><subject>Growth Disorders - physiopathology</subject><subject>Haploinsufficiency</subject><subject>Histone H3</subject><subject>Histone methyltransferase</subject><subject>Histones</subject><subject>Histones - metabolism</subject><subject>Homeostasis</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Letter</subject><subject>Localization</subject><subject>Maintenance</subject><subject>Mass spectrometry</subject><subject>Methylation</subject><subject>Methyltransferases</subject><subject>Mice</subject><subject>Missense mutation</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>Post-translation</subject><subject>Post-translational modification</subject><subject>Protein Binding</subject><subject>Protein Domains</subject><subject>Protein Transport</subject><subject>Robinson, J</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Scientific imaging</subject><subject>Sotos Syndrome - genetics</subject><subject>Sotos Syndrome - physiopathology</subject><subject>Tumors</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10stu1DAUBmALgei08ABskAUbWKT4mjjLUbm0ooAEwxJZjudkxiWXqe1I7dtzRlMogwZlESn-zi_r5CfkGWennEnzJimuTVkwXhdcS1XIB2TGVVUWqjTVQzJjTJiCGVkekeOUrhhjmlfqMTmSXBnNKjMjPxZroOuQ8jgA7V38Sc_lR1n2IGgEH6eQE337-dNCzqkbljSt3QYSzTgUhgxxBUPwCOa0h7y-7VwO40A7pMmjfEIeta5L8PTufUK-v3-3ODsvLr98uDibXxa-NCoXEgyotmwarRy0XHLBeFkLxrxWTatE49oKj-vKG8NaEEosDXdL2Tju0TN5Ql7tcjdxvJ4gZduH5KHDi8A4JSuE0Zxzw2ukL_-hV-MUB7wdqlrW2ghW3auV68CGoR1zdH4bauclE1wzLbZZxQGFO4HoOlxoG_Dznn9xwPtNuLZ_o9MDCJ8l9MEfTH29N4Amw01euSkle_Ht677lO-vjmFKE1m5iwN9-azmz207ZXacsdspuO2Ulzjy_29jU9LD8M_G7RAjEDiQ8GlYQ71f6_9RfRHfQng</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Weinberg, Daniel N.</creator><creator>Papillon-Cavanagh, Simon</creator><creator>Chen, Haifen</creator><creator>Yue, Yuan</creator><creator>Chen, Xiao</creator><creator>Rajagopalan, Kartik N.</creator><creator>Horth, Cynthia</creator><creator>McGuire, John T.</creator><creator>Xu, Xinjing</creator><creator>Nikbakht, Hamid</creator><creator>Lemiesz, Agata E.</creator><creator>Marchione, Dylan M.</creator><creator>Marunde, Matthew R.</creator><creator>Meiners, Matthew J.</creator><creator>Cheek, Marcus A.</creator><creator>Keogh, Michael-Christopher</creator><creator>Bareke, Eric</creator><creator>Djedid, Anissa</creator><creator>Harutyunyan, Ashot S.</creator><creator>Jabado, Nada</creator><creator>Garcia, Benjamin A.</creator><creator>Li, Haitao</creator><creator>Allis, C. David</creator><creator>Majewski, Jacek</creator><creator>Lu, Chao</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>201909</creationdate><title>The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape</title><author>Weinberg, Daniel N. ; Papillon-Cavanagh, Simon ; Chen, Haifen ; Yue, Yuan ; Chen, Xiao ; Rajagopalan, Kartik N. ; Horth, Cynthia ; McGuire, John T. ; Xu, Xinjing ; Nikbakht, Hamid ; Lemiesz, Agata E. ; Marchione, Dylan M. ; Marunde, Matthew R. ; Meiners, Matthew J. ; Cheek, Marcus A. ; Keogh, Michael-Christopher ; Bareke, Eric ; Djedid, Anissa ; Harutyunyan, Ashot S. ; Jabado, Nada ; Garcia, Benjamin A. ; Li, Haitao ; Allis, C. David ; Majewski, Jacek ; Lu, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c684t-3e8e4f6bb54aef13120169200c54bf42baf7f6b97c880fe242d81ad3ba1cef103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>101/58</topic><topic>13/106</topic><topic>38/91</topic><topic>42/41</topic><topic>631/136/142</topic><topic>631/1647/2210/2211</topic><topic>631/208/176/1988</topic><topic>631/337/100/2285</topic><topic>631/67/1536</topic><topic>Ablation</topic><topic>Analysis</topic><topic>Animals</topic><topic>Binding</topic><topic>Bioinformatics</topic><topic>Cell fate</topic><topic>Cell Line</topic><topic>Children</topic><topic>Chromatin</topic><topic>CpG islands</topic><topic>Deoxyribonucleic acid</topic><topic>Developmental disabilities</topic><topic>DNA</topic><topic>DNA (Cytosine-5-)-Methyltransferases - metabolism</topic><topic>DNA Methylation</topic><topic>DNA methyltransferase</topic><topic>DNA, Intergenic - metabolism</topic><topic>DNMT1 protein</topic><topic>Euchromatin</topic><topic>Gene expression</topic><topic>Genome-Wide Association Study</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Growth Disorders - genetics</topic><topic>Growth Disorders - physiopathology</topic><topic>Haploinsufficiency</topic><topic>Histone H3</topic><topic>Histone methyltransferase</topic><topic>Histones</topic><topic>Histones - metabolism</topic><topic>Homeostasis</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Letter</topic><topic>Localization</topic><topic>Maintenance</topic><topic>Mass spectrometry</topic><topic>Methylation</topic><topic>Methyltransferases</topic><topic>Mice</topic><topic>Missense mutation</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>Post-translation</topic><topic>Post-translational modification</topic><topic>Protein Binding</topic><topic>Protein Domains</topic><topic>Protein Transport</topic><topic>Robinson, J</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Scientific imaging</topic><topic>Sotos Syndrome - genetics</topic><topic>Sotos Syndrome - physiopathology</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weinberg, Daniel N.</creatorcontrib><creatorcontrib>Papillon-Cavanagh, Simon</creatorcontrib><creatorcontrib>Chen, Haifen</creatorcontrib><creatorcontrib>Yue, Yuan</creatorcontrib><creatorcontrib>Chen, Xiao</creatorcontrib><creatorcontrib>Rajagopalan, Kartik N.</creatorcontrib><creatorcontrib>Horth, Cynthia</creatorcontrib><creatorcontrib>McGuire, John T.</creatorcontrib><creatorcontrib>Xu, Xinjing</creatorcontrib><creatorcontrib>Nikbakht, Hamid</creatorcontrib><creatorcontrib>Lemiesz, Agata E.</creatorcontrib><creatorcontrib>Marchione, Dylan M.</creatorcontrib><creatorcontrib>Marunde, Matthew R.</creatorcontrib><creatorcontrib>Meiners, Matthew J.</creatorcontrib><creatorcontrib>Cheek, Marcus A.</creatorcontrib><creatorcontrib>Keogh, Michael-Christopher</creatorcontrib><creatorcontrib>Bareke, Eric</creatorcontrib><creatorcontrib>Djedid, Anissa</creatorcontrib><creatorcontrib>Harutyunyan, Ashot S.</creatorcontrib><creatorcontrib>Jabado, Nada</creatorcontrib><creatorcontrib>Garcia, Benjamin A.</creatorcontrib><creatorcontrib>Li, Haitao</creatorcontrib><creatorcontrib>Allis, C. David</creatorcontrib><creatorcontrib>Majewski, Jacek</creatorcontrib><creatorcontrib>Lu, Chao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>ProQuest Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weinberg, Daniel N.</au><au>Papillon-Cavanagh, Simon</au><au>Chen, Haifen</au><au>Yue, Yuan</au><au>Chen, Xiao</au><au>Rajagopalan, Kartik N.</au><au>Horth, Cynthia</au><au>McGuire, John T.</au><au>Xu, Xinjing</au><au>Nikbakht, Hamid</au><au>Lemiesz, Agata E.</au><au>Marchione, Dylan M.</au><au>Marunde, Matthew R.</au><au>Meiners, Matthew J.</au><au>Cheek, Marcus A.</au><au>Keogh, Michael-Christopher</au><au>Bareke, Eric</au><au>Djedid, Anissa</au><au>Harutyunyan, Ashot S.</au><au>Jabado, Nada</au><au>Garcia, Benjamin A.</au><au>Li, Haitao</au><au>Allis, C. David</au><au>Majewski, Jacek</au><au>Lu, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2019-09</date><risdate>2019</risdate><volume>573</volume><issue>7773</issue><spage>281</spage><epage>286</epage><pages>281-286</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Enzymes that catalyse CpG methylation in DNA, including the DNA methyltransferases 1 (DNMT1), 3A (DNMT3A) and 3B (DNMT3B), are indispensable for mammalian tissue development and homeostasis 1 – 4 . They are also implicated in human developmental disorders and cancers 5 – 8 , supporting the critical role of DNA methylation in the specification and maintenance of cell fate. Previous studies have suggested that post-translational modifications of histones are involved in specifying patterns of DNA methyltransferase localization and DNA methylation at promoters and actively transcribed gene bodies 9 – 11 . However, the mechanisms that control the establishment and maintenance of intergenic DNA methylation remain poorly understood. Tatton–Brown–Rahman syndrome (TBRS) is a childhood overgrowth disorder that is defined by germline mutations in DNMT3A . TBRS shares clinical features with Sotos syndrome (which is caused by haploinsufficiency of NSD1 , a histone methyltransferase that catalyses the dimethylation of histone H3 at K36 (H3K36me2) 8 , 12 , 13 ), which suggests that there is a mechanistic link between these two diseases. Here we report that NSD1-mediated H3K36me2 is required for the recruitment of DNMT3A and maintenance of DNA methylation at intergenic regions. Genome-wide analysis shows that the binding and activity of DNMT3A colocalize with H3K36me2 at non-coding regions of euchromatin. Genetic ablation of Nsd1 and its paralogue Nsd2 in mouse cells results in a redistribution of DNMT3A to H3K36me3-modified gene bodies and a reduction in the methylation of intergenic DNA. Blood samples from patients with Sotos syndrome and  NSD1 -mutant tumours also exhibit hypomethylation of intergenic DNA. The PWWP domain of DNMT3A shows dual recognition of H3K36me2 and H3K36me3 in vitro, with a higher binding affinity towards H3K36me2 that is abrogated by TBRS-derived missense mutations. Together, our study reveals a trans -chromatin regulatory pathway that connects aberrant intergenic CpG methylation to human neoplastic and developmental overgrowth. H3K36me2 targets DNMT3A to intergenic regions and this process, together with H3K36me3-mediated recruitment of DNMT3B, has a key role in establishing and maintaining genomic DNA methylation landscapes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31485078</pmid><doi>10.1038/s41586-019-1534-3</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2019-09, Vol.573 (7773), p.281-286
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_2285111819
source MEDLINE; SpringerLink Journals (MCLS); Nature
subjects 101/58
13/106
38/91
42/41
631/136/142
631/1647/2210/2211
631/208/176/1988
631/337/100/2285
631/67/1536
Ablation
Analysis
Animals
Binding
Bioinformatics
Cell fate
Cell Line
Children
Chromatin
CpG islands
Deoxyribonucleic acid
Developmental disabilities
DNA
DNA (Cytosine-5-)-Methyltransferases - metabolism
DNA Methylation
DNA methyltransferase
DNA, Intergenic - metabolism
DNMT1 protein
Euchromatin
Gene expression
Genome-Wide Association Study
Genomes
Genomics
Growth Disorders - genetics
Growth Disorders - physiopathology
Haploinsufficiency
Histone H3
Histone methyltransferase
Histones
Histones - metabolism
Homeostasis
Humanities and Social Sciences
Humans
Letter
Localization
Maintenance
Mass spectrometry
Methylation
Methyltransferases
Mice
Missense mutation
multidisciplinary
Mutation
Post-translation
Post-translational modification
Protein Binding
Protein Domains
Protein Transport
Robinson, J
Science
Science (multidisciplinary)
Scientific imaging
Sotos Syndrome - genetics
Sotos Syndrome - physiopathology
Tumors
title The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A03%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20histone%20mark%20H3K36me2%20recruits%20DNMT3A%20and%20shapes%20the%20intergenic%20DNA%20methylation%20landscape&rft.jtitle=Nature%20(London)&rft.au=Weinberg,%20Daniel%20N.&rft.date=2019-09&rft.volume=573&rft.issue=7773&rft.spage=281&rft.epage=286&rft.pages=281-286&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-019-1534-3&rft_dat=%3Cgale_proqu%3EA602150529%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2293958207&rft_id=info:pmid/31485078&rft_galeid=A602150529&rfr_iscdi=true