Carbon-Nanotube-Coated 3D Microspring Force Sensor for Medical Applications

Flexible electronic materials combined with micro-3D fabrication present new opportunities for wearable biosensors and medical devices. This Research Article introduces a novel carbon-nanotube-coated force sensor, successfully combining the advantages of flexible conductive nanomaterials and the ver...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2019-10, Vol.11 (39), p.35577-35586
Hauptverfasser: Li, Bing, Gil, Bruno, Power, Maura, Gao, Anzhu, Treratanakulchai, Shen, Anastasova, Salzitsa, Yang, Guang-Zhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 35586
container_issue 39
container_start_page 35577
container_title ACS applied materials & interfaces
container_volume 11
creator Li, Bing
Gil, Bruno
Power, Maura
Gao, Anzhu
Treratanakulchai, Shen
Anastasova, Salzitsa
Yang, Guang-Zhong
description Flexible electronic materials combined with micro-3D fabrication present new opportunities for wearable biosensors and medical devices. This Research Article introduces a novel carbon-nanotube-coated force sensor, successfully combining the advantages of flexible conductive nanomaterials and the versatility of two photon polymerization technologies for creating functional 3D microstructures. The device employs carbon-nanotube-coated microsprings with varying configurations and geometries for  real-time force sensing. To demonstrate its practical value, the device has first been embodied as a patch sensor for transcutaneous monitoring of human arterial pulses, followed by the development of a multiple-point force-sensitive catheter for real-time noninvasive intraluminal intervention. The results illustrate the potential of leveraging advanced nanomaterials and micro-3D-printing for developing new medical devices.
doi_str_mv 10.1021/acsami.9b12237
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2285105559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2285105559</sourcerecordid><originalsourceid>FETCH-LOGICAL-a436t-494c6d348fa625fa1650d338729f0fb32a7f86e5c810db321241aef4d42666a63</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EolBYGVFGhJTi7yRjFSggWhiA2bokNkqVxMFOBv57XKV0YzjdnfR7T3oPoSuCFwRTcgelh7ZeZAWhlCVH6IxknMcpFfT4cHM-Q-febzGWjGJximaM8JTzJDlDLzm4wnbxK3R2GAsd5xYGXUXsPtrUpbO-d3X3Fa2sK3X0rjtvXWTCbHRVl9BEy75vwjHUtvMX6MRA4_Xlfs_R5-rhI3-K12-Pz_lyHQNncoh5xktZMZ4akFQYIFLgirE0oZnBpmAUEpNKLcqU4Cq8hHIC2vCKUyklSDZHN5Nv7-z3qP2g2tqXummg03b0itJUECyEyAK6mNBdFO-0USFPC-5HEax2BaqpQLUvMAiu995j0erqgP81FoDbCQhCtbWj60LU_9x-AXJheYs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2285105559</pqid></control><display><type>article</type><title>Carbon-Nanotube-Coated 3D Microspring Force Sensor for Medical Applications</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Li, Bing ; Gil, Bruno ; Power, Maura ; Gao, Anzhu ; Treratanakulchai, Shen ; Anastasova, Salzitsa ; Yang, Guang-Zhong</creator><creatorcontrib>Li, Bing ; Gil, Bruno ; Power, Maura ; Gao, Anzhu ; Treratanakulchai, Shen ; Anastasova, Salzitsa ; Yang, Guang-Zhong</creatorcontrib><description>Flexible electronic materials combined with micro-3D fabrication present new opportunities for wearable biosensors and medical devices. This Research Article introduces a novel carbon-nanotube-coated force sensor, successfully combining the advantages of flexible conductive nanomaterials and the versatility of two photon polymerization technologies for creating functional 3D microstructures. The device employs carbon-nanotube-coated microsprings with varying configurations and geometries for  real-time force sensing. To demonstrate its practical value, the device has first been embodied as a patch sensor for transcutaneous monitoring of human arterial pulses, followed by the development of a multiple-point force-sensitive catheter for real-time noninvasive intraluminal intervention. The results illustrate the potential of leveraging advanced nanomaterials and micro-3D-printing for developing new medical devices.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.9b12237</identifier><identifier>PMID: 31484477</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Microscopy, Scanning Probe ; Nanostructures - chemistry ; Nanotubes, Carbon - chemistry ; Printing, Three-Dimensional</subject><ispartof>ACS applied materials &amp; interfaces, 2019-10, Vol.11 (39), p.35577-35586</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a436t-494c6d348fa625fa1650d338729f0fb32a7f86e5c810db321241aef4d42666a63</citedby><cites>FETCH-LOGICAL-a436t-494c6d348fa625fa1650d338729f0fb32a7f86e5c810db321241aef4d42666a63</cites><orcidid>0000-0001-8054-059X ; 0000-0002-1737-3423</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.9b12237$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.9b12237$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31484477$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Bing</creatorcontrib><creatorcontrib>Gil, Bruno</creatorcontrib><creatorcontrib>Power, Maura</creatorcontrib><creatorcontrib>Gao, Anzhu</creatorcontrib><creatorcontrib>Treratanakulchai, Shen</creatorcontrib><creatorcontrib>Anastasova, Salzitsa</creatorcontrib><creatorcontrib>Yang, Guang-Zhong</creatorcontrib><title>Carbon-Nanotube-Coated 3D Microspring Force Sensor for Medical Applications</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Flexible electronic materials combined with micro-3D fabrication present new opportunities for wearable biosensors and medical devices. This Research Article introduces a novel carbon-nanotube-coated force sensor, successfully combining the advantages of flexible conductive nanomaterials and the versatility of two photon polymerization technologies for creating functional 3D microstructures. The device employs carbon-nanotube-coated microsprings with varying configurations and geometries for  real-time force sensing. To demonstrate its practical value, the device has first been embodied as a patch sensor for transcutaneous monitoring of human arterial pulses, followed by the development of a multiple-point force-sensitive catheter for real-time noninvasive intraluminal intervention. The results illustrate the potential of leveraging advanced nanomaterials and micro-3D-printing for developing new medical devices.</description><subject>Microscopy, Scanning Probe</subject><subject>Nanostructures - chemistry</subject><subject>Nanotubes, Carbon - chemistry</subject><subject>Printing, Three-Dimensional</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kL1PwzAQxS0EolBYGVFGhJTi7yRjFSggWhiA2bokNkqVxMFOBv57XKV0YzjdnfR7T3oPoSuCFwRTcgelh7ZeZAWhlCVH6IxknMcpFfT4cHM-Q-febzGWjGJximaM8JTzJDlDLzm4wnbxK3R2GAsd5xYGXUXsPtrUpbO-d3X3Fa2sK3X0rjtvXWTCbHRVl9BEy75vwjHUtvMX6MRA4_Xlfs_R5-rhI3-K12-Pz_lyHQNncoh5xktZMZ4akFQYIFLgirE0oZnBpmAUEpNKLcqU4Cq8hHIC2vCKUyklSDZHN5Nv7-z3qP2g2tqXummg03b0itJUECyEyAK6mNBdFO-0USFPC-5HEax2BaqpQLUvMAiu995j0erqgP81FoDbCQhCtbWj60LU_9x-AXJheYs</recordid><startdate>20191002</startdate><enddate>20191002</enddate><creator>Li, Bing</creator><creator>Gil, Bruno</creator><creator>Power, Maura</creator><creator>Gao, Anzhu</creator><creator>Treratanakulchai, Shen</creator><creator>Anastasova, Salzitsa</creator><creator>Yang, Guang-Zhong</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8054-059X</orcidid><orcidid>https://orcid.org/0000-0002-1737-3423</orcidid></search><sort><creationdate>20191002</creationdate><title>Carbon-Nanotube-Coated 3D Microspring Force Sensor for Medical Applications</title><author>Li, Bing ; Gil, Bruno ; Power, Maura ; Gao, Anzhu ; Treratanakulchai, Shen ; Anastasova, Salzitsa ; Yang, Guang-Zhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a436t-494c6d348fa625fa1650d338729f0fb32a7f86e5c810db321241aef4d42666a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Microscopy, Scanning Probe</topic><topic>Nanostructures - chemistry</topic><topic>Nanotubes, Carbon - chemistry</topic><topic>Printing, Three-Dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Bing</creatorcontrib><creatorcontrib>Gil, Bruno</creatorcontrib><creatorcontrib>Power, Maura</creatorcontrib><creatorcontrib>Gao, Anzhu</creatorcontrib><creatorcontrib>Treratanakulchai, Shen</creatorcontrib><creatorcontrib>Anastasova, Salzitsa</creatorcontrib><creatorcontrib>Yang, Guang-Zhong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Bing</au><au>Gil, Bruno</au><au>Power, Maura</au><au>Gao, Anzhu</au><au>Treratanakulchai, Shen</au><au>Anastasova, Salzitsa</au><au>Yang, Guang-Zhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon-Nanotube-Coated 3D Microspring Force Sensor for Medical Applications</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2019-10-02</date><risdate>2019</risdate><volume>11</volume><issue>39</issue><spage>35577</spage><epage>35586</epage><pages>35577-35586</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Flexible electronic materials combined with micro-3D fabrication present new opportunities for wearable biosensors and medical devices. This Research Article introduces a novel carbon-nanotube-coated force sensor, successfully combining the advantages of flexible conductive nanomaterials and the versatility of two photon polymerization technologies for creating functional 3D microstructures. The device employs carbon-nanotube-coated microsprings with varying configurations and geometries for  real-time force sensing. To demonstrate its practical value, the device has first been embodied as a patch sensor for transcutaneous monitoring of human arterial pulses, followed by the development of a multiple-point force-sensitive catheter for real-time noninvasive intraluminal intervention. The results illustrate the potential of leveraging advanced nanomaterials and micro-3D-printing for developing new medical devices.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31484477</pmid><doi>10.1021/acsami.9b12237</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8054-059X</orcidid><orcidid>https://orcid.org/0000-0002-1737-3423</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2019-10, Vol.11 (39), p.35577-35586
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2285105559
source MEDLINE; American Chemical Society Journals
subjects Microscopy, Scanning Probe
Nanostructures - chemistry
Nanotubes, Carbon - chemistry
Printing, Three-Dimensional
title Carbon-Nanotube-Coated 3D Microspring Force Sensor for Medical Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A28%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon-Nanotube-Coated%203D%20Microspring%20Force%20Sensor%20for%20Medical%20Applications&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Li,%20Bing&rft.date=2019-10-02&rft.volume=11&rft.issue=39&rft.spage=35577&rft.epage=35586&rft.pages=35577-35586&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.9b12237&rft_dat=%3Cproquest_cross%3E2285105559%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2285105559&rft_id=info:pmid/31484477&rfr_iscdi=true