Direct Versus Calculated LDL Cholesterol and C-Reactive Protein in Cardiovascular Disease Risk Assessment in the Framingham Offspring Study

Increases in circulating LDL cholesterol (LDL-C) and high-sensitivity C-reactive protein (hsCRP) concentrations are significant risk factors for cardiovascular disease (CVD). We assessed direct LDL-C and hsCRP concentrations compared to standard risk factors in the Framingham Offspring Study. We use...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical chemistry (Baltimore, Md.) Md.), 2019-09, Vol.65 (9), p.1102-1114
Hauptverfasser: Ikezaki, Hiroaki, Fisher, Virginia A, Lim, Elise, Ai, Masumi, Liu, Ching-Ti, Adrienne Cupples, L, Nakajima, Katsuyuki, Asztalos, Bela F, Furusyo, Norihiro, Schaefer, Ernst J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1114
container_issue 9
container_start_page 1102
container_title Clinical chemistry (Baltimore, Md.)
container_volume 65
creator Ikezaki, Hiroaki
Fisher, Virginia A
Lim, Elise
Ai, Masumi
Liu, Ching-Ti
Adrienne Cupples, L
Nakajima, Katsuyuki
Asztalos, Bela F
Furusyo, Norihiro
Schaefer, Ernst J
description Increases in circulating LDL cholesterol (LDL-C) and high-sensitivity C-reactive protein (hsCRP) concentrations are significant risk factors for cardiovascular disease (CVD). We assessed direct LDL-C and hsCRP concentrations compared to standard risk factors in the Framingham Offspring Study. We used stored frozen plasma samples (-80 °C) obtained after an overnight fast from 3147 male and female participants (mean age, 58 years) free of CVD at cycle 6 of the Framingham Offspring Study. Overall, 677 participants (21.5%) had a CVD end point over a median of 16.0 years of follow-up. Total cholesterol (TC), triglyceride (TG), HDL cholesterol (HDL-C), direct LDL-C (Denka Seiken and Kyowa Medex methods), and hsCRP (Dade Behring method) concentrations were measured by automated analysis. LDL-C was also calculated by both the Friedewald and Martin methods. Considering all CVD outcomes on univariate analysis, significant factors included standard risk factors (age, hypertension, HDL-C, hypertension treatment, sex, diabetes, smoking, and TC concentration) and nonstandard risk factors (non-HDL-C, direct LDL-C and calculated LDL-C, TG, and hsCRP concentrations). On multivariate analysis, only the Denka Seiken direct LDL-C and the Dade Behring hsCRP were still significant on Cox regression analysis and improved the net risk reclassification index, but with modest effects. Discordance analysis confirmed the benefit of the Denka Seiken direct LDL-C method for prospective hard CVD endpoints (new-onset myocardial infarction, stroke, and/or CVD death). Our data indicate that the Denka Seiken direct LDL-C and Dade Behring hsCRP measurements add significant, but modest, information about CVD risk, compared to standard risk factors and/or calculated LDL-C.
doi_str_mv 10.1373/clinchem.2019.304600
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2284561772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2284561772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-8d50a24d0da088b26bb12728042383e0384877faaf79f08b6e19f886a0d8e2a03</originalsourceid><addsrcrecordid>eNpdkdtq3DAQhkVpaTbbvkEpgt70xludbMmXwdskhYWEpO2tGVvjrlMfUo0cyDP0paNlk14UhMTA9w8z-hj7IMVGaqu_tEM_tXscN0rIcqOFKYR4xVYy1yJzeSFfs5UQosxKaewJOyW6S6WxrnjLTrRUulS5XLG_2z5gG_lPDLQQr2BolwEier7b7ni1nwekiGEeOEyeV9kNQhv7B-TXYY7YTzydCoLv5wegQzTwbU8IhPymp9_8jAiJRpzigYx75OcBxn76tYeRX3Ud3YdU8Nu4-Md37E0HA-H753fNfpx__V5dZruri2_V2S5rjbExcz4XoIwXHoRzjSqaRiqrnDBKO41CO-Os7QA6W3bCNQXKsnOuAOEdKhB6zT4f-96H-c-S9qvHnlocBphwXqhWypn0gdaqhH76D72blzCl6RJVGm3zIt1rZo5UG2aigF2dthohPNZS1AdZ9Yus-iCrPspKsY_PzZdmRP8v9GJHPwGKBpJi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2294375694</pqid></control><display><type>article</type><title>Direct Versus Calculated LDL Cholesterol and C-Reactive Protein in Cardiovascular Disease Risk Assessment in the Framingham Offspring Study</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Ikezaki, Hiroaki ; Fisher, Virginia A ; Lim, Elise ; Ai, Masumi ; Liu, Ching-Ti ; Adrienne Cupples, L ; Nakajima, Katsuyuki ; Asztalos, Bela F ; Furusyo, Norihiro ; Schaefer, Ernst J</creator><creatorcontrib>Ikezaki, Hiroaki ; Fisher, Virginia A ; Lim, Elise ; Ai, Masumi ; Liu, Ching-Ti ; Adrienne Cupples, L ; Nakajima, Katsuyuki ; Asztalos, Bela F ; Furusyo, Norihiro ; Schaefer, Ernst J</creatorcontrib><description>Increases in circulating LDL cholesterol (LDL-C) and high-sensitivity C-reactive protein (hsCRP) concentrations are significant risk factors for cardiovascular disease (CVD). We assessed direct LDL-C and hsCRP concentrations compared to standard risk factors in the Framingham Offspring Study. We used stored frozen plasma samples (-80 °C) obtained after an overnight fast from 3147 male and female participants (mean age, 58 years) free of CVD at cycle 6 of the Framingham Offspring Study. Overall, 677 participants (21.5%) had a CVD end point over a median of 16.0 years of follow-up. Total cholesterol (TC), triglyceride (TG), HDL cholesterol (HDL-C), direct LDL-C (Denka Seiken and Kyowa Medex methods), and hsCRP (Dade Behring method) concentrations were measured by automated analysis. LDL-C was also calculated by both the Friedewald and Martin methods. Considering all CVD outcomes on univariate analysis, significant factors included standard risk factors (age, hypertension, HDL-C, hypertension treatment, sex, diabetes, smoking, and TC concentration) and nonstandard risk factors (non-HDL-C, direct LDL-C and calculated LDL-C, TG, and hsCRP concentrations). On multivariate analysis, only the Denka Seiken direct LDL-C and the Dade Behring hsCRP were still significant on Cox regression analysis and improved the net risk reclassification index, but with modest effects. Discordance analysis confirmed the benefit of the Denka Seiken direct LDL-C method for prospective hard CVD endpoints (new-onset myocardial infarction, stroke, and/or CVD death). Our data indicate that the Denka Seiken direct LDL-C and Dade Behring hsCRP measurements add significant, but modest, information about CVD risk, compared to standard risk factors and/or calculated LDL-C.</description><identifier>ISSN: 0009-9147</identifier><identifier>EISSN: 1530-8561</identifier><identifier>DOI: 10.1373/clinchem.2019.304600</identifier><identifier>PMID: 31239251</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Biomarkers - blood ; C-reactive protein ; C-Reactive Protein - analysis ; Cardiovascular disease ; Cardiovascular diseases ; Cardiovascular Diseases - blood ; Cardiovascular Diseases - etiology ; Cerebral infarction ; Cholesterol ; Cholesterol, LDL - blood ; Diabetes mellitus ; Discordance ; Female ; Health risk assessment ; Health risks ; Heart diseases ; High density lipoprotein ; Humans ; Hypertension ; Laboratories ; Lipids ; Low density lipoprotein ; Male ; Mathematical analysis ; Middle Aged ; Multivariate Analysis ; Myocardial infarction ; Offspring ; Proportional Hazards Models ; Prospective Studies ; Proteins ; Reclassification ; Regression analysis ; Risk analysis ; Risk Assessment ; Risk factors ; Smoking ; Statins ; Triglycerides</subject><ispartof>Clinical chemistry (Baltimore, Md.), 2019-09, Vol.65 (9), p.1102-1114</ispartof><rights>2019 American Association for Clinical Chemistry.</rights><rights>Copyright American Association for Clinical Chemistry Sep 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-8d50a24d0da088b26bb12728042383e0384877faaf79f08b6e19f886a0d8e2a03</citedby><cites>FETCH-LOGICAL-c447t-8d50a24d0da088b26bb12728042383e0384877faaf79f08b6e19f886a0d8e2a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31239251$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ikezaki, Hiroaki</creatorcontrib><creatorcontrib>Fisher, Virginia A</creatorcontrib><creatorcontrib>Lim, Elise</creatorcontrib><creatorcontrib>Ai, Masumi</creatorcontrib><creatorcontrib>Liu, Ching-Ti</creatorcontrib><creatorcontrib>Adrienne Cupples, L</creatorcontrib><creatorcontrib>Nakajima, Katsuyuki</creatorcontrib><creatorcontrib>Asztalos, Bela F</creatorcontrib><creatorcontrib>Furusyo, Norihiro</creatorcontrib><creatorcontrib>Schaefer, Ernst J</creatorcontrib><title>Direct Versus Calculated LDL Cholesterol and C-Reactive Protein in Cardiovascular Disease Risk Assessment in the Framingham Offspring Study</title><title>Clinical chemistry (Baltimore, Md.)</title><addtitle>Clin Chem</addtitle><description>Increases in circulating LDL cholesterol (LDL-C) and high-sensitivity C-reactive protein (hsCRP) concentrations are significant risk factors for cardiovascular disease (CVD). We assessed direct LDL-C and hsCRP concentrations compared to standard risk factors in the Framingham Offspring Study. We used stored frozen plasma samples (-80 °C) obtained after an overnight fast from 3147 male and female participants (mean age, 58 years) free of CVD at cycle 6 of the Framingham Offspring Study. Overall, 677 participants (21.5%) had a CVD end point over a median of 16.0 years of follow-up. Total cholesterol (TC), triglyceride (TG), HDL cholesterol (HDL-C), direct LDL-C (Denka Seiken and Kyowa Medex methods), and hsCRP (Dade Behring method) concentrations were measured by automated analysis. LDL-C was also calculated by both the Friedewald and Martin methods. Considering all CVD outcomes on univariate analysis, significant factors included standard risk factors (age, hypertension, HDL-C, hypertension treatment, sex, diabetes, smoking, and TC concentration) and nonstandard risk factors (non-HDL-C, direct LDL-C and calculated LDL-C, TG, and hsCRP concentrations). On multivariate analysis, only the Denka Seiken direct LDL-C and the Dade Behring hsCRP were still significant on Cox regression analysis and improved the net risk reclassification index, but with modest effects. Discordance analysis confirmed the benefit of the Denka Seiken direct LDL-C method for prospective hard CVD endpoints (new-onset myocardial infarction, stroke, and/or CVD death). Our data indicate that the Denka Seiken direct LDL-C and Dade Behring hsCRP measurements add significant, but modest, information about CVD risk, compared to standard risk factors and/or calculated LDL-C.</description><subject>Biomarkers - blood</subject><subject>C-reactive protein</subject><subject>C-Reactive Protein - analysis</subject><subject>Cardiovascular disease</subject><subject>Cardiovascular diseases</subject><subject>Cardiovascular Diseases - blood</subject><subject>Cardiovascular Diseases - etiology</subject><subject>Cerebral infarction</subject><subject>Cholesterol</subject><subject>Cholesterol, LDL - blood</subject><subject>Diabetes mellitus</subject><subject>Discordance</subject><subject>Female</subject><subject>Health risk assessment</subject><subject>Health risks</subject><subject>Heart diseases</subject><subject>High density lipoprotein</subject><subject>Humans</subject><subject>Hypertension</subject><subject>Laboratories</subject><subject>Lipids</subject><subject>Low density lipoprotein</subject><subject>Male</subject><subject>Mathematical analysis</subject><subject>Middle Aged</subject><subject>Multivariate Analysis</subject><subject>Myocardial infarction</subject><subject>Offspring</subject><subject>Proportional Hazards Models</subject><subject>Prospective Studies</subject><subject>Proteins</subject><subject>Reclassification</subject><subject>Regression analysis</subject><subject>Risk analysis</subject><subject>Risk Assessment</subject><subject>Risk factors</subject><subject>Smoking</subject><subject>Statins</subject><subject>Triglycerides</subject><issn>0009-9147</issn><issn>1530-8561</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkdtq3DAQhkVpaTbbvkEpgt70xludbMmXwdskhYWEpO2tGVvjrlMfUo0cyDP0paNlk14UhMTA9w8z-hj7IMVGaqu_tEM_tXscN0rIcqOFKYR4xVYy1yJzeSFfs5UQosxKaewJOyW6S6WxrnjLTrRUulS5XLG_2z5gG_lPDLQQr2BolwEier7b7ni1nwekiGEeOEyeV9kNQhv7B-TXYY7YTzydCoLv5wegQzTwbU8IhPymp9_8jAiJRpzigYx75OcBxn76tYeRX3Ud3YdU8Nu4-Md37E0HA-H753fNfpx__V5dZruri2_V2S5rjbExcz4XoIwXHoRzjSqaRiqrnDBKO41CO-Os7QA6W3bCNQXKsnOuAOEdKhB6zT4f-96H-c-S9qvHnlocBphwXqhWypn0gdaqhH76D72blzCl6RJVGm3zIt1rZo5UG2aigF2dthohPNZS1AdZ9Yus-iCrPspKsY_PzZdmRP8v9GJHPwGKBpJi</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Ikezaki, Hiroaki</creator><creator>Fisher, Virginia A</creator><creator>Lim, Elise</creator><creator>Ai, Masumi</creator><creator>Liu, Ching-Ti</creator><creator>Adrienne Cupples, L</creator><creator>Nakajima, Katsuyuki</creator><creator>Asztalos, Bela F</creator><creator>Furusyo, Norihiro</creator><creator>Schaefer, Ernst J</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4U-</scope><scope>7QO</scope><scope>7RV</scope><scope>7TM</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>S0X</scope><scope>7X8</scope></search><sort><creationdate>20190901</creationdate><title>Direct Versus Calculated LDL Cholesterol and C-Reactive Protein in Cardiovascular Disease Risk Assessment in the Framingham Offspring Study</title><author>Ikezaki, Hiroaki ; Fisher, Virginia A ; Lim, Elise ; Ai, Masumi ; Liu, Ching-Ti ; Adrienne Cupples, L ; Nakajima, Katsuyuki ; Asztalos, Bela F ; Furusyo, Norihiro ; Schaefer, Ernst J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-8d50a24d0da088b26bb12728042383e0384877faaf79f08b6e19f886a0d8e2a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biomarkers - blood</topic><topic>C-reactive protein</topic><topic>C-Reactive Protein - analysis</topic><topic>Cardiovascular disease</topic><topic>Cardiovascular diseases</topic><topic>Cardiovascular Diseases - blood</topic><topic>Cardiovascular Diseases - etiology</topic><topic>Cerebral infarction</topic><topic>Cholesterol</topic><topic>Cholesterol, LDL - blood</topic><topic>Diabetes mellitus</topic><topic>Discordance</topic><topic>Female</topic><topic>Health risk assessment</topic><topic>Health risks</topic><topic>Heart diseases</topic><topic>High density lipoprotein</topic><topic>Humans</topic><topic>Hypertension</topic><topic>Laboratories</topic><topic>Lipids</topic><topic>Low density lipoprotein</topic><topic>Male</topic><topic>Mathematical analysis</topic><topic>Middle Aged</topic><topic>Multivariate Analysis</topic><topic>Myocardial infarction</topic><topic>Offspring</topic><topic>Proportional Hazards Models</topic><topic>Prospective Studies</topic><topic>Proteins</topic><topic>Reclassification</topic><topic>Regression analysis</topic><topic>Risk analysis</topic><topic>Risk Assessment</topic><topic>Risk factors</topic><topic>Smoking</topic><topic>Statins</topic><topic>Triglycerides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ikezaki, Hiroaki</creatorcontrib><creatorcontrib>Fisher, Virginia A</creatorcontrib><creatorcontrib>Lim, Elise</creatorcontrib><creatorcontrib>Ai, Masumi</creatorcontrib><creatorcontrib>Liu, Ching-Ti</creatorcontrib><creatorcontrib>Adrienne Cupples, L</creatorcontrib><creatorcontrib>Nakajima, Katsuyuki</creatorcontrib><creatorcontrib>Asztalos, Bela F</creatorcontrib><creatorcontrib>Furusyo, Norihiro</creatorcontrib><creatorcontrib>Schaefer, Ernst J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>University Readers</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database (ProQuest)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical chemistry (Baltimore, Md.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ikezaki, Hiroaki</au><au>Fisher, Virginia A</au><au>Lim, Elise</au><au>Ai, Masumi</au><au>Liu, Ching-Ti</au><au>Adrienne Cupples, L</au><au>Nakajima, Katsuyuki</au><au>Asztalos, Bela F</au><au>Furusyo, Norihiro</au><au>Schaefer, Ernst J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct Versus Calculated LDL Cholesterol and C-Reactive Protein in Cardiovascular Disease Risk Assessment in the Framingham Offspring Study</atitle><jtitle>Clinical chemistry (Baltimore, Md.)</jtitle><addtitle>Clin Chem</addtitle><date>2019-09-01</date><risdate>2019</risdate><volume>65</volume><issue>9</issue><spage>1102</spage><epage>1114</epage><pages>1102-1114</pages><issn>0009-9147</issn><eissn>1530-8561</eissn><abstract>Increases in circulating LDL cholesterol (LDL-C) and high-sensitivity C-reactive protein (hsCRP) concentrations are significant risk factors for cardiovascular disease (CVD). We assessed direct LDL-C and hsCRP concentrations compared to standard risk factors in the Framingham Offspring Study. We used stored frozen plasma samples (-80 °C) obtained after an overnight fast from 3147 male and female participants (mean age, 58 years) free of CVD at cycle 6 of the Framingham Offspring Study. Overall, 677 participants (21.5%) had a CVD end point over a median of 16.0 years of follow-up. Total cholesterol (TC), triglyceride (TG), HDL cholesterol (HDL-C), direct LDL-C (Denka Seiken and Kyowa Medex methods), and hsCRP (Dade Behring method) concentrations were measured by automated analysis. LDL-C was also calculated by both the Friedewald and Martin methods. Considering all CVD outcomes on univariate analysis, significant factors included standard risk factors (age, hypertension, HDL-C, hypertension treatment, sex, diabetes, smoking, and TC concentration) and nonstandard risk factors (non-HDL-C, direct LDL-C and calculated LDL-C, TG, and hsCRP concentrations). On multivariate analysis, only the Denka Seiken direct LDL-C and the Dade Behring hsCRP were still significant on Cox regression analysis and improved the net risk reclassification index, but with modest effects. Discordance analysis confirmed the benefit of the Denka Seiken direct LDL-C method for prospective hard CVD endpoints (new-onset myocardial infarction, stroke, and/or CVD death). Our data indicate that the Denka Seiken direct LDL-C and Dade Behring hsCRP measurements add significant, but modest, information about CVD risk, compared to standard risk factors and/or calculated LDL-C.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>31239251</pmid><doi>10.1373/clinchem.2019.304600</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0009-9147
ispartof Clinical chemistry (Baltimore, Md.), 2019-09, Vol.65 (9), p.1102-1114
issn 0009-9147
1530-8561
language eng
recordid cdi_proquest_miscellaneous_2284561772
source MEDLINE; Oxford University Press Journals All Titles (1996-Current)
subjects Biomarkers - blood
C-reactive protein
C-Reactive Protein - analysis
Cardiovascular disease
Cardiovascular diseases
Cardiovascular Diseases - blood
Cardiovascular Diseases - etiology
Cerebral infarction
Cholesterol
Cholesterol, LDL - blood
Diabetes mellitus
Discordance
Female
Health risk assessment
Health risks
Heart diseases
High density lipoprotein
Humans
Hypertension
Laboratories
Lipids
Low density lipoprotein
Male
Mathematical analysis
Middle Aged
Multivariate Analysis
Myocardial infarction
Offspring
Proportional Hazards Models
Prospective Studies
Proteins
Reclassification
Regression analysis
Risk analysis
Risk Assessment
Risk factors
Smoking
Statins
Triglycerides
title Direct Versus Calculated LDL Cholesterol and C-Reactive Protein in Cardiovascular Disease Risk Assessment in the Framingham Offspring Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T16%3A11%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20Versus%20Calculated%20LDL%20Cholesterol%20and%20C-Reactive%20Protein%20in%20Cardiovascular%20Disease%20Risk%20Assessment%20in%20the%20Framingham%20Offspring%20Study&rft.jtitle=Clinical%20chemistry%20(Baltimore,%20Md.)&rft.au=Ikezaki,%20Hiroaki&rft.date=2019-09-01&rft.volume=65&rft.issue=9&rft.spage=1102&rft.epage=1114&rft.pages=1102-1114&rft.issn=0009-9147&rft.eissn=1530-8561&rft_id=info:doi/10.1373/clinchem.2019.304600&rft_dat=%3Cproquest_cross%3E2284561772%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2294375694&rft_id=info:pmid/31239251&rfr_iscdi=true