Comparison of MRI IVIM and MR perfusion imaging in acute ischemic stroke due to large vessel occlusion

Purpose Intravoxel incoherent motion is a diffusion-weighted imaging magnetic resonance imaging technique that measures microvascular perfusion from a multi-b value sequence. Intravoxel incoherent motion microvascular perfusion has not been directly compared to conventional dynamic susceptibility co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of stroke 2020-04, Vol.15 (3), p.332-342
Hauptverfasser: Zhu, Guangming, Federau, Christian, Wintermark, Max, Chen, Hui, Marcellus, David G, Martin, Blake W, Heit, Jeremy J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose Intravoxel incoherent motion is a diffusion-weighted imaging magnetic resonance imaging technique that measures microvascular perfusion from a multi-b value sequence. Intravoxel incoherent motion microvascular perfusion has not been directly compared to conventional dynamic susceptibility contrast perfusion-weighted imaging in the context of acute ischemic stroke. We determined the degree of correlation between perfusion-weighted imaging and intravoxel incoherent motion parameter maps in patients with acute ischemic stroke. Methods We performed a retrospective cohort study of acute ischemic stroke patients undergoing thrombectomy treatment triage by magnetic resonance imaging. Intravoxel incoherent motion perfusion fraction maps were derived using two-step voxel-by-voxel post-processing. Ischemic core, penumbra, non-ischemia, and contralateral hemisphere were delineated based upon diffusion-weighted imaging and perfusion-weighted imaging using a Tmax >6 s threshold. Signal intensity within different brain compartments were measured on intravoxel incoherent motion (IVIM f, IVIM D*, IVIM fD*) parametric maps and compared the differences using one-way ANOVA. Ischemic volumes were measured on perfusion-weighted imaging and intravoxel incoherent motion parametric maps. Bland–Altman analysis and voxel-based volumetric comparison were used to determine the agreements among ischemic volumes of perfusion-weighted imaging and intravoxel incoherent motion perfusion parameters. Inter-rater reliability on intravoxel incoherent motion maps was also assessed. Significance level was set at α 
ISSN:1747-4930
1747-4949
DOI:10.1177/1747493019873515