Use of a real-time, algorithm-driven, publicly displayed, automated signal to improve insulin prescribing practices

•Remote monitoring of blood glucose and insulin orders improved glycemic control.•An automated, publicly displayed signal improved insulin prescribing practices.•Insulin therapy for hyperglycemia in the absence of diabetes increased hypoglycemia.•Algorithm-driven treatment recommendations were safe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetes research and clinical practice 2019-11, Vol.157, p.107833-107833, Article 107833
Hauptverfasser: Franco, Thérèse, Aaronson, Barry, Williams, Barbara, Blackmore, Craig
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 107833
container_issue
container_start_page 107833
container_title Diabetes research and clinical practice
container_volume 157
creator Franco, Thérèse
Aaronson, Barry
Williams, Barbara
Blackmore, Craig
description •Remote monitoring of blood glucose and insulin orders improved glycemic control.•An automated, publicly displayed signal improved insulin prescribing practices.•Insulin therapy for hyperglycemia in the absence of diabetes increased hypoglycemia.•Algorithm-driven treatment recommendations were safe and effective for patients with diabetes. The clinical andon board (CAB) is a novel electronic surveillance and communication system, which alerts providers to and prompts treatment of dysglycemia. This investigation was designed to determine the CAB’s effectiveness in supporting adherence to standardized evidence-based protocols, as well as improving glycemic control. This study was a retrospective pre/post analysis of insulin orders and blood glucose values. We used a Student’s t-test for continuous variables and Chi2 for all other variables. This study included patients 18 years or older admitted to the hospital medical service as an inpatient with a length of stay greater than 24 h and less than 90 days. We used Pearson’s correlation coefficient to evaluate the relationship between CAB and blood glucose. The rate of compliance in prescribing basal insulin for patient with diabetes increased from 56% to 77% (p 
doi_str_mv 10.1016/j.diabres.2019.107833
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2283998689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168822719307223</els_id><sourcerecordid>2283998689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-713b69aaa7c9d83b269ffd8e396e8980485744b71f3d4cf32d2e34bde0668c253</originalsourceid><addsrcrecordid>eNqFkEtv1DAURq0K1E5LfwLISxbN4NhJbK8QqoAiVWJD15Zj3wx35DywnZHm39ftDGxZ-ZN17usQ8r5m25rV3af91qPtI6QtZ7Uuf1IJcUE2tZK8UpzLN2RTOPWar8h1SnvGWCea9pJcibqRJcoNSU8J6DxQSyPYUGUc4Y7asJsj5t9j5SMeYLqjy9oHdOFIPaYl2CP4Qq15Hm0GTxPuJhtonimOS5wPQHFKa8CJLmVBF7HHaVeydRkdpHfk7WBDgtvze0Oevn39df9QPf78_uP-y2PlRNfmStai77S1Vjrtleh5p4fBKxC6A6UVa1Qrm6aX9SB84wbBPQfR9B5Y1ynHW3FDPp76lp3-rJCyGTE5CMFOMK_JcK6E1qpTuqDtCXVxTinCYJaIo41HUzPz4tvszdm3efFtTr5L3YfziLUfwf-r-iu4AJ9PAJRDDwjRJIcwOfAYwWXjZ_zPiGfVqpV1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2283998689</pqid></control><display><type>article</type><title>Use of a real-time, algorithm-driven, publicly displayed, automated signal to improve insulin prescribing practices</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><creator>Franco, Thérèse ; Aaronson, Barry ; Williams, Barbara ; Blackmore, Craig</creator><creatorcontrib>Franco, Thérèse ; Aaronson, Barry ; Williams, Barbara ; Blackmore, Craig</creatorcontrib><description>•Remote monitoring of blood glucose and insulin orders improved glycemic control.•An automated, publicly displayed signal improved insulin prescribing practices.•Insulin therapy for hyperglycemia in the absence of diabetes increased hypoglycemia.•Algorithm-driven treatment recommendations were safe and effective for patients with diabetes. The clinical andon board (CAB) is a novel electronic surveillance and communication system, which alerts providers to and prompts treatment of dysglycemia. This investigation was designed to determine the CAB’s effectiveness in supporting adherence to standardized evidence-based protocols, as well as improving glycemic control. This study was a retrospective pre/post analysis of insulin orders and blood glucose values. We used a Student’s t-test for continuous variables and Chi2 for all other variables. This study included patients 18 years or older admitted to the hospital medical service as an inpatient with a length of stay greater than 24 h and less than 90 days. We used Pearson’s correlation coefficient to evaluate the relationship between CAB and blood glucose. The rate of compliance in prescribing basal insulin for patient with diabetes increased from 56% to 77% (p &lt; 0.001). Similarly, compliance rates for prescribing correctional insulin in patients without diabetes increased from 15% to 37% (p &lt; 0.001). Performance on the CAB was linearly related to blood glucose (p = 0.004), and there was a small statistically (not clinically) significant improvement in mean blood glucose values. This approach is effective in alerting and engaging providers to prescribe insulin in a standardized manner with potential to improve glycemic control.</description><identifier>ISSN: 0168-8227</identifier><identifier>EISSN: 1872-8227</identifier><identifier>DOI: 10.1016/j.diabres.2019.107833</identifier><identifier>PMID: 31476347</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>Aged ; Algorithms ; Automation ; Diabetes ; Diabetes Mellitus - drug therapy ; Drug Prescriptions - standards ; Female ; Humans ; Insulin ; Insulin - pharmacology ; Insulin - therapeutic use ; Male ; Medication alert systems ; Quality improvement ; Retrospective Studies</subject><ispartof>Diabetes research and clinical practice, 2019-11, Vol.157, p.107833-107833, Article 107833</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright © 2019 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-713b69aaa7c9d83b269ffd8e396e8980485744b71f3d4cf32d2e34bde0668c253</citedby><cites>FETCH-LOGICAL-c365t-713b69aaa7c9d83b269ffd8e396e8980485744b71f3d4cf32d2e34bde0668c253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.diabres.2019.107833$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31476347$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Franco, Thérèse</creatorcontrib><creatorcontrib>Aaronson, Barry</creatorcontrib><creatorcontrib>Williams, Barbara</creatorcontrib><creatorcontrib>Blackmore, Craig</creatorcontrib><title>Use of a real-time, algorithm-driven, publicly displayed, automated signal to improve insulin prescribing practices</title><title>Diabetes research and clinical practice</title><addtitle>Diabetes Res Clin Pract</addtitle><description>•Remote monitoring of blood glucose and insulin orders improved glycemic control.•An automated, publicly displayed signal improved insulin prescribing practices.•Insulin therapy for hyperglycemia in the absence of diabetes increased hypoglycemia.•Algorithm-driven treatment recommendations were safe and effective for patients with diabetes. The clinical andon board (CAB) is a novel electronic surveillance and communication system, which alerts providers to and prompts treatment of dysglycemia. This investigation was designed to determine the CAB’s effectiveness in supporting adherence to standardized evidence-based protocols, as well as improving glycemic control. This study was a retrospective pre/post analysis of insulin orders and blood glucose values. We used a Student’s t-test for continuous variables and Chi2 for all other variables. This study included patients 18 years or older admitted to the hospital medical service as an inpatient with a length of stay greater than 24 h and less than 90 days. We used Pearson’s correlation coefficient to evaluate the relationship between CAB and blood glucose. The rate of compliance in prescribing basal insulin for patient with diabetes increased from 56% to 77% (p &lt; 0.001). Similarly, compliance rates for prescribing correctional insulin in patients without diabetes increased from 15% to 37% (p &lt; 0.001). Performance on the CAB was linearly related to blood glucose (p = 0.004), and there was a small statistically (not clinically) significant improvement in mean blood glucose values. This approach is effective in alerting and engaging providers to prescribe insulin in a standardized manner with potential to improve glycemic control.</description><subject>Aged</subject><subject>Algorithms</subject><subject>Automation</subject><subject>Diabetes</subject><subject>Diabetes Mellitus - drug therapy</subject><subject>Drug Prescriptions - standards</subject><subject>Female</subject><subject>Humans</subject><subject>Insulin</subject><subject>Insulin - pharmacology</subject><subject>Insulin - therapeutic use</subject><subject>Male</subject><subject>Medication alert systems</subject><subject>Quality improvement</subject><subject>Retrospective Studies</subject><issn>0168-8227</issn><issn>1872-8227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEtv1DAURq0K1E5LfwLISxbN4NhJbK8QqoAiVWJD15Zj3wx35DywnZHm39ftDGxZ-ZN17usQ8r5m25rV3af91qPtI6QtZ7Uuf1IJcUE2tZK8UpzLN2RTOPWar8h1SnvGWCea9pJcibqRJcoNSU8J6DxQSyPYUGUc4Y7asJsj5t9j5SMeYLqjy9oHdOFIPaYl2CP4Qq15Hm0GTxPuJhtonimOS5wPQHFKa8CJLmVBF7HHaVeydRkdpHfk7WBDgtvze0Oevn39df9QPf78_uP-y2PlRNfmStai77S1Vjrtleh5p4fBKxC6A6UVa1Qrm6aX9SB84wbBPQfR9B5Y1ynHW3FDPp76lp3-rJCyGTE5CMFOMK_JcK6E1qpTuqDtCXVxTinCYJaIo41HUzPz4tvszdm3efFtTr5L3YfziLUfwf-r-iu4AJ9PAJRDDwjRJIcwOfAYwWXjZ_zPiGfVqpV1</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Franco, Thérèse</creator><creator>Aaronson, Barry</creator><creator>Williams, Barbara</creator><creator>Blackmore, Craig</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201911</creationdate><title>Use of a real-time, algorithm-driven, publicly displayed, automated signal to improve insulin prescribing practices</title><author>Franco, Thérèse ; Aaronson, Barry ; Williams, Barbara ; Blackmore, Craig</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-713b69aaa7c9d83b269ffd8e396e8980485744b71f3d4cf32d2e34bde0668c253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aged</topic><topic>Algorithms</topic><topic>Automation</topic><topic>Diabetes</topic><topic>Diabetes Mellitus - drug therapy</topic><topic>Drug Prescriptions - standards</topic><topic>Female</topic><topic>Humans</topic><topic>Insulin</topic><topic>Insulin - pharmacology</topic><topic>Insulin - therapeutic use</topic><topic>Male</topic><topic>Medication alert systems</topic><topic>Quality improvement</topic><topic>Retrospective Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Franco, Thérèse</creatorcontrib><creatorcontrib>Aaronson, Barry</creatorcontrib><creatorcontrib>Williams, Barbara</creatorcontrib><creatorcontrib>Blackmore, Craig</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Diabetes research and clinical practice</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Franco, Thérèse</au><au>Aaronson, Barry</au><au>Williams, Barbara</au><au>Blackmore, Craig</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of a real-time, algorithm-driven, publicly displayed, automated signal to improve insulin prescribing practices</atitle><jtitle>Diabetes research and clinical practice</jtitle><addtitle>Diabetes Res Clin Pract</addtitle><date>2019-11</date><risdate>2019</risdate><volume>157</volume><spage>107833</spage><epage>107833</epage><pages>107833-107833</pages><artnum>107833</artnum><issn>0168-8227</issn><eissn>1872-8227</eissn><abstract>•Remote monitoring of blood glucose and insulin orders improved glycemic control.•An automated, publicly displayed signal improved insulin prescribing practices.•Insulin therapy for hyperglycemia in the absence of diabetes increased hypoglycemia.•Algorithm-driven treatment recommendations were safe and effective for patients with diabetes. The clinical andon board (CAB) is a novel electronic surveillance and communication system, which alerts providers to and prompts treatment of dysglycemia. This investigation was designed to determine the CAB’s effectiveness in supporting adherence to standardized evidence-based protocols, as well as improving glycemic control. This study was a retrospective pre/post analysis of insulin orders and blood glucose values. We used a Student’s t-test for continuous variables and Chi2 for all other variables. This study included patients 18 years or older admitted to the hospital medical service as an inpatient with a length of stay greater than 24 h and less than 90 days. We used Pearson’s correlation coefficient to evaluate the relationship between CAB and blood glucose. The rate of compliance in prescribing basal insulin for patient with diabetes increased from 56% to 77% (p &lt; 0.001). Similarly, compliance rates for prescribing correctional insulin in patients without diabetes increased from 15% to 37% (p &lt; 0.001). Performance on the CAB was linearly related to blood glucose (p = 0.004), and there was a small statistically (not clinically) significant improvement in mean blood glucose values. This approach is effective in alerting and engaging providers to prescribe insulin in a standardized manner with potential to improve glycemic control.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>31476347</pmid><doi>10.1016/j.diabres.2019.107833</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0168-8227
ispartof Diabetes research and clinical practice, 2019-11, Vol.157, p.107833-107833, Article 107833
issn 0168-8227
1872-8227
language eng
recordid cdi_proquest_miscellaneous_2283998689
source Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE
subjects Aged
Algorithms
Automation
Diabetes
Diabetes Mellitus - drug therapy
Drug Prescriptions - standards
Female
Humans
Insulin
Insulin - pharmacology
Insulin - therapeutic use
Male
Medication alert systems
Quality improvement
Retrospective Studies
title Use of a real-time, algorithm-driven, publicly displayed, automated signal to improve insulin prescribing practices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T17%3A25%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20a%20real-time,%20algorithm-driven,%20publicly%20displayed,%20automated%20signal%20to%20improve%20insulin%20prescribing%20practices&rft.jtitle=Diabetes%20research%20and%20clinical%20practice&rft.au=Franco,%20Th%C3%A9r%C3%A8se&rft.date=2019-11&rft.volume=157&rft.spage=107833&rft.epage=107833&rft.pages=107833-107833&rft.artnum=107833&rft.issn=0168-8227&rft.eissn=1872-8227&rft_id=info:doi/10.1016/j.diabres.2019.107833&rft_dat=%3Cproquest_cross%3E2283998689%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2283998689&rft_id=info:pmid/31476347&rft_els_id=S0168822719307223&rfr_iscdi=true