Use of a real-time, algorithm-driven, publicly displayed, automated signal to improve insulin prescribing practices
•Remote monitoring of blood glucose and insulin orders improved glycemic control.•An automated, publicly displayed signal improved insulin prescribing practices.•Insulin therapy for hyperglycemia in the absence of diabetes increased hypoglycemia.•Algorithm-driven treatment recommendations were safe...
Gespeichert in:
Veröffentlicht in: | Diabetes research and clinical practice 2019-11, Vol.157, p.107833-107833, Article 107833 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 107833 |
---|---|
container_issue | |
container_start_page | 107833 |
container_title | Diabetes research and clinical practice |
container_volume | 157 |
creator | Franco, Thérèse Aaronson, Barry Williams, Barbara Blackmore, Craig |
description | •Remote monitoring of blood glucose and insulin orders improved glycemic control.•An automated, publicly displayed signal improved insulin prescribing practices.•Insulin therapy for hyperglycemia in the absence of diabetes increased hypoglycemia.•Algorithm-driven treatment recommendations were safe and effective for patients with diabetes.
The clinical andon board (CAB) is a novel electronic surveillance and communication system, which alerts providers to and prompts treatment of dysglycemia. This investigation was designed to determine the CAB’s effectiveness in supporting adherence to standardized evidence-based protocols, as well as improving glycemic control.
This study was a retrospective pre/post analysis of insulin orders and blood glucose values. We used a Student’s t-test for continuous variables and Chi2 for all other variables. This study included patients 18 years or older admitted to the hospital medical service as an inpatient with a length of stay greater than 24 h and less than 90 days. We used Pearson’s correlation coefficient to evaluate the relationship between CAB and blood glucose.
The rate of compliance in prescribing basal insulin for patient with diabetes increased from 56% to 77% (p |
doi_str_mv | 10.1016/j.diabres.2019.107833 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2283998689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168822719307223</els_id><sourcerecordid>2283998689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-713b69aaa7c9d83b269ffd8e396e8980485744b71f3d4cf32d2e34bde0668c253</originalsourceid><addsrcrecordid>eNqFkEtv1DAURq0K1E5LfwLISxbN4NhJbK8QqoAiVWJD15Zj3wx35DywnZHm39ftDGxZ-ZN17usQ8r5m25rV3af91qPtI6QtZ7Uuf1IJcUE2tZK8UpzLN2RTOPWar8h1SnvGWCea9pJcibqRJcoNSU8J6DxQSyPYUGUc4Y7asJsj5t9j5SMeYLqjy9oHdOFIPaYl2CP4Qq15Hm0GTxPuJhtonimOS5wPQHFKa8CJLmVBF7HHaVeydRkdpHfk7WBDgtvze0Oevn39df9QPf78_uP-y2PlRNfmStai77S1Vjrtleh5p4fBKxC6A6UVa1Qrm6aX9SB84wbBPQfR9B5Y1ynHW3FDPp76lp3-rJCyGTE5CMFOMK_JcK6E1qpTuqDtCXVxTinCYJaIo41HUzPz4tvszdm3efFtTr5L3YfziLUfwf-r-iu4AJ9PAJRDDwjRJIcwOfAYwWXjZ_zPiGfVqpV1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2283998689</pqid></control><display><type>article</type><title>Use of a real-time, algorithm-driven, publicly displayed, automated signal to improve insulin prescribing practices</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><creator>Franco, Thérèse ; Aaronson, Barry ; Williams, Barbara ; Blackmore, Craig</creator><creatorcontrib>Franco, Thérèse ; Aaronson, Barry ; Williams, Barbara ; Blackmore, Craig</creatorcontrib><description>•Remote monitoring of blood glucose and insulin orders improved glycemic control.•An automated, publicly displayed signal improved insulin prescribing practices.•Insulin therapy for hyperglycemia in the absence of diabetes increased hypoglycemia.•Algorithm-driven treatment recommendations were safe and effective for patients with diabetes.
The clinical andon board (CAB) is a novel electronic surveillance and communication system, which alerts providers to and prompts treatment of dysglycemia. This investigation was designed to determine the CAB’s effectiveness in supporting adherence to standardized evidence-based protocols, as well as improving glycemic control.
This study was a retrospective pre/post analysis of insulin orders and blood glucose values. We used a Student’s t-test for continuous variables and Chi2 for all other variables. This study included patients 18 years or older admitted to the hospital medical service as an inpatient with a length of stay greater than 24 h and less than 90 days. We used Pearson’s correlation coefficient to evaluate the relationship between CAB and blood glucose.
The rate of compliance in prescribing basal insulin for patient with diabetes increased from 56% to 77% (p < 0.001). Similarly, compliance rates for prescribing correctional insulin in patients without diabetes increased from 15% to 37% (p < 0.001). Performance on the CAB was linearly related to blood glucose (p = 0.004), and there was a small statistically (not clinically) significant improvement in mean blood glucose values.
This approach is effective in alerting and engaging providers to prescribe insulin in a standardized manner with potential to improve glycemic control.</description><identifier>ISSN: 0168-8227</identifier><identifier>EISSN: 1872-8227</identifier><identifier>DOI: 10.1016/j.diabres.2019.107833</identifier><identifier>PMID: 31476347</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>Aged ; Algorithms ; Automation ; Diabetes ; Diabetes Mellitus - drug therapy ; Drug Prescriptions - standards ; Female ; Humans ; Insulin ; Insulin - pharmacology ; Insulin - therapeutic use ; Male ; Medication alert systems ; Quality improvement ; Retrospective Studies</subject><ispartof>Diabetes research and clinical practice, 2019-11, Vol.157, p.107833-107833, Article 107833</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright © 2019 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-713b69aaa7c9d83b269ffd8e396e8980485744b71f3d4cf32d2e34bde0668c253</citedby><cites>FETCH-LOGICAL-c365t-713b69aaa7c9d83b269ffd8e396e8980485744b71f3d4cf32d2e34bde0668c253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.diabres.2019.107833$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31476347$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Franco, Thérèse</creatorcontrib><creatorcontrib>Aaronson, Barry</creatorcontrib><creatorcontrib>Williams, Barbara</creatorcontrib><creatorcontrib>Blackmore, Craig</creatorcontrib><title>Use of a real-time, algorithm-driven, publicly displayed, automated signal to improve insulin prescribing practices</title><title>Diabetes research and clinical practice</title><addtitle>Diabetes Res Clin Pract</addtitle><description>•Remote monitoring of blood glucose and insulin orders improved glycemic control.•An automated, publicly displayed signal improved insulin prescribing practices.•Insulin therapy for hyperglycemia in the absence of diabetes increased hypoglycemia.•Algorithm-driven treatment recommendations were safe and effective for patients with diabetes.
The clinical andon board (CAB) is a novel electronic surveillance and communication system, which alerts providers to and prompts treatment of dysglycemia. This investigation was designed to determine the CAB’s effectiveness in supporting adherence to standardized evidence-based protocols, as well as improving glycemic control.
This study was a retrospective pre/post analysis of insulin orders and blood glucose values. We used a Student’s t-test for continuous variables and Chi2 for all other variables. This study included patients 18 years or older admitted to the hospital medical service as an inpatient with a length of stay greater than 24 h and less than 90 days. We used Pearson’s correlation coefficient to evaluate the relationship between CAB and blood glucose.
The rate of compliance in prescribing basal insulin for patient with diabetes increased from 56% to 77% (p < 0.001). Similarly, compliance rates for prescribing correctional insulin in patients without diabetes increased from 15% to 37% (p < 0.001). Performance on the CAB was linearly related to blood glucose (p = 0.004), and there was a small statistically (not clinically) significant improvement in mean blood glucose values.
This approach is effective in alerting and engaging providers to prescribe insulin in a standardized manner with potential to improve glycemic control.</description><subject>Aged</subject><subject>Algorithms</subject><subject>Automation</subject><subject>Diabetes</subject><subject>Diabetes Mellitus - drug therapy</subject><subject>Drug Prescriptions - standards</subject><subject>Female</subject><subject>Humans</subject><subject>Insulin</subject><subject>Insulin - pharmacology</subject><subject>Insulin - therapeutic use</subject><subject>Male</subject><subject>Medication alert systems</subject><subject>Quality improvement</subject><subject>Retrospective Studies</subject><issn>0168-8227</issn><issn>1872-8227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEtv1DAURq0K1E5LfwLISxbN4NhJbK8QqoAiVWJD15Zj3wx35DywnZHm39ftDGxZ-ZN17usQ8r5m25rV3af91qPtI6QtZ7Uuf1IJcUE2tZK8UpzLN2RTOPWar8h1SnvGWCea9pJcibqRJcoNSU8J6DxQSyPYUGUc4Y7asJsj5t9j5SMeYLqjy9oHdOFIPaYl2CP4Qq15Hm0GTxPuJhtonimOS5wPQHFKa8CJLmVBF7HHaVeydRkdpHfk7WBDgtvze0Oevn39df9QPf78_uP-y2PlRNfmStai77S1Vjrtleh5p4fBKxC6A6UVa1Qrm6aX9SB84wbBPQfR9B5Y1ynHW3FDPp76lp3-rJCyGTE5CMFOMK_JcK6E1qpTuqDtCXVxTinCYJaIo41HUzPz4tvszdm3efFtTr5L3YfziLUfwf-r-iu4AJ9PAJRDDwjRJIcwOfAYwWXjZ_zPiGfVqpV1</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Franco, Thérèse</creator><creator>Aaronson, Barry</creator><creator>Williams, Barbara</creator><creator>Blackmore, Craig</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201911</creationdate><title>Use of a real-time, algorithm-driven, publicly displayed, automated signal to improve insulin prescribing practices</title><author>Franco, Thérèse ; Aaronson, Barry ; Williams, Barbara ; Blackmore, Craig</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-713b69aaa7c9d83b269ffd8e396e8980485744b71f3d4cf32d2e34bde0668c253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aged</topic><topic>Algorithms</topic><topic>Automation</topic><topic>Diabetes</topic><topic>Diabetes Mellitus - drug therapy</topic><topic>Drug Prescriptions - standards</topic><topic>Female</topic><topic>Humans</topic><topic>Insulin</topic><topic>Insulin - pharmacology</topic><topic>Insulin - therapeutic use</topic><topic>Male</topic><topic>Medication alert systems</topic><topic>Quality improvement</topic><topic>Retrospective Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Franco, Thérèse</creatorcontrib><creatorcontrib>Aaronson, Barry</creatorcontrib><creatorcontrib>Williams, Barbara</creatorcontrib><creatorcontrib>Blackmore, Craig</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Diabetes research and clinical practice</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Franco, Thérèse</au><au>Aaronson, Barry</au><au>Williams, Barbara</au><au>Blackmore, Craig</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of a real-time, algorithm-driven, publicly displayed, automated signal to improve insulin prescribing practices</atitle><jtitle>Diabetes research and clinical practice</jtitle><addtitle>Diabetes Res Clin Pract</addtitle><date>2019-11</date><risdate>2019</risdate><volume>157</volume><spage>107833</spage><epage>107833</epage><pages>107833-107833</pages><artnum>107833</artnum><issn>0168-8227</issn><eissn>1872-8227</eissn><abstract>•Remote monitoring of blood glucose and insulin orders improved glycemic control.•An automated, publicly displayed signal improved insulin prescribing practices.•Insulin therapy for hyperglycemia in the absence of diabetes increased hypoglycemia.•Algorithm-driven treatment recommendations were safe and effective for patients with diabetes.
The clinical andon board (CAB) is a novel electronic surveillance and communication system, which alerts providers to and prompts treatment of dysglycemia. This investigation was designed to determine the CAB’s effectiveness in supporting adherence to standardized evidence-based protocols, as well as improving glycemic control.
This study was a retrospective pre/post analysis of insulin orders and blood glucose values. We used a Student’s t-test for continuous variables and Chi2 for all other variables. This study included patients 18 years or older admitted to the hospital medical service as an inpatient with a length of stay greater than 24 h and less than 90 days. We used Pearson’s correlation coefficient to evaluate the relationship between CAB and blood glucose.
The rate of compliance in prescribing basal insulin for patient with diabetes increased from 56% to 77% (p < 0.001). Similarly, compliance rates for prescribing correctional insulin in patients without diabetes increased from 15% to 37% (p < 0.001). Performance on the CAB was linearly related to blood glucose (p = 0.004), and there was a small statistically (not clinically) significant improvement in mean blood glucose values.
This approach is effective in alerting and engaging providers to prescribe insulin in a standardized manner with potential to improve glycemic control.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>31476347</pmid><doi>10.1016/j.diabres.2019.107833</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-8227 |
ispartof | Diabetes research and clinical practice, 2019-11, Vol.157, p.107833-107833, Article 107833 |
issn | 0168-8227 1872-8227 |
language | eng |
recordid | cdi_proquest_miscellaneous_2283998689 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE |
subjects | Aged Algorithms Automation Diabetes Diabetes Mellitus - drug therapy Drug Prescriptions - standards Female Humans Insulin Insulin - pharmacology Insulin - therapeutic use Male Medication alert systems Quality improvement Retrospective Studies |
title | Use of a real-time, algorithm-driven, publicly displayed, automated signal to improve insulin prescribing practices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T17%3A25%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20a%20real-time,%20algorithm-driven,%20publicly%20displayed,%20automated%20signal%20to%20improve%20insulin%20prescribing%20practices&rft.jtitle=Diabetes%20research%20and%20clinical%20practice&rft.au=Franco,%20Th%C3%A9r%C3%A8se&rft.date=2019-11&rft.volume=157&rft.spage=107833&rft.epage=107833&rft.pages=107833-107833&rft.artnum=107833&rft.issn=0168-8227&rft.eissn=1872-8227&rft_id=info:doi/10.1016/j.diabres.2019.107833&rft_dat=%3Cproquest_cross%3E2283998689%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2283998689&rft_id=info:pmid/31476347&rft_els_id=S0168822719307223&rfr_iscdi=true |