From Pairwise Comparisons and Rating to a Unified Quality Scale
The goal of psychometric scaling is the quantification of perceptual experiences, understanding the relationship between an external stimulus, the internal representation and the response. In this paper, we propose a probabilistic framework to fuse the outcome of different psychophysical experimenta...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2020-01, Vol.29, p.1139-1151 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1151 |
---|---|
container_issue | |
container_start_page | 1139 |
container_title | IEEE transactions on image processing |
container_volume | 29 |
creator | Perez-Ortiz, Maria Mikhailiuk, Aliaksei Zerman, Emin Hulusic, Vedad Valenzise, Giuseppe Mantiuk, Rafal K. |
description | The goal of psychometric scaling is the quantification of perceptual experiences, understanding the relationship between an external stimulus, the internal representation and the response. In this paper, we propose a probabilistic framework to fuse the outcome of different psychophysical experimental protocols, namely rating and pairwise comparisons experiments. Such a method can be used for merging existing datasets of subjective nature and for experiments in which both measurements are collected. We analyze and compare the outcomes of both types of experimental protocols in terms of time and accuracy in a set of simulations and experiments with benchmark and real-world image quality assessment datasets, showing the necessity of scaling and the advantages of each protocol and mixing. Although most of our examples focus on image quality assessment, our findings generalize to any other subjective quality-of-experience task. |
doi_str_mv | 10.1109/TIP.2019.2936103 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2283984316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8818316</ieee_id><sourcerecordid>2283984316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-c0b4ef3faa2b66cf4288da2e5d6366248149932c77a7cf6016af3da576e4ca1f3</originalsourceid><addsrcrecordid>eNpdkU1rHDEMhk1paT7ae6FQDL2kh9lYtsf2nEpYmiaw0KRNzkbrsVuHmfFmPNOSf18vu9lDThLSI_FKLyEfgC0AWHN-d32z4AyaBW-EAiZekWNoJFSMSf665KzWlQbZHJGTnB8YA1mDekuOBEhtjGyOydfLMfX0BuP4L2ZPl6nf4BhzGjLFoaU_cYrDbzolivR-iCH6lt7O2MXpif5y2Pl35E3ALvv3-3hK7i-_3S2vqtWP79fLi1XlJBdT5dha-iACIl8r5YLkxrTIfd0qoRSXpohsBHdao3ZBMVAYRIu1Vl46hCBOyZfd3j_Y2c0YexyfbMJory5WdltjXDJmlPgLhT3bsZsxPc4-T7aP2fmuw8GnOVvOjWiMFKAK-vkF-pDmcSiXWC6gvFYLXReK7Sg3ppxHHw4KgNmtEbYYYbdG2L0RZeTTfvG87n17GHj-fAE-7oDovT-0jQGz1fUfrrWJHg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312017375</pqid></control><display><type>article</type><title>From Pairwise Comparisons and Rating to a Unified Quality Scale</title><source>IEEE Electronic Library (IEL)</source><creator>Perez-Ortiz, Maria ; Mikhailiuk, Aliaksei ; Zerman, Emin ; Hulusic, Vedad ; Valenzise, Giuseppe ; Mantiuk, Rafal K.</creator><creatorcontrib>Perez-Ortiz, Maria ; Mikhailiuk, Aliaksei ; Zerman, Emin ; Hulusic, Vedad ; Valenzise, Giuseppe ; Mantiuk, Rafal K.</creatorcontrib><description>The goal of psychometric scaling is the quantification of perceptual experiences, understanding the relationship between an external stimulus, the internal representation and the response. In this paper, we propose a probabilistic framework to fuse the outcome of different psychophysical experimental protocols, namely rating and pairwise comparisons experiments. Such a method can be used for merging existing datasets of subjective nature and for experiments in which both measurements are collected. We analyze and compare the outcomes of both types of experimental protocols in terms of time and accuracy in a set of simulations and experiments with benchmark and real-world image quality assessment datasets, showing the necessity of scaling and the advantages of each protocol and mixing. Although most of our examples focus on image quality assessment, our findings generalize to any other subjective quality-of-experience task.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2019.2936103</identifier><identifier>PMID: 31478849</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>dataset fusion ; Datasets ; Engineering Sciences ; Experiments ; image and video quality assessment ; Image quality ; Observers ; pairwise comparisons ; Probabilistic logic ; Protocols ; Psychometric scaling ; Quality assessment ; rating ; Signal and Image processing ; Training</subject><ispartof>IEEE transactions on image processing, 2020-01, Vol.29, p.1139-1151</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-c0b4ef3faa2b66cf4288da2e5d6366248149932c77a7cf6016af3da576e4ca1f3</citedby><cites>FETCH-LOGICAL-c423t-c0b4ef3faa2b66cf4288da2e5d6366248149932c77a7cf6016af3da576e4ca1f3</cites><orcidid>0000-0003-1302-6093 ; 0000-0002-3675-095X ; 0000-0002-5840-5743 ; 0000-0001-9757-6644 ; 0000-0002-3210-8978 ; 0000-0003-2353-0349</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8818316$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8818316$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31478849$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02400863$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Perez-Ortiz, Maria</creatorcontrib><creatorcontrib>Mikhailiuk, Aliaksei</creatorcontrib><creatorcontrib>Zerman, Emin</creatorcontrib><creatorcontrib>Hulusic, Vedad</creatorcontrib><creatorcontrib>Valenzise, Giuseppe</creatorcontrib><creatorcontrib>Mantiuk, Rafal K.</creatorcontrib><title>From Pairwise Comparisons and Rating to a Unified Quality Scale</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>The goal of psychometric scaling is the quantification of perceptual experiences, understanding the relationship between an external stimulus, the internal representation and the response. In this paper, we propose a probabilistic framework to fuse the outcome of different psychophysical experimental protocols, namely rating and pairwise comparisons experiments. Such a method can be used for merging existing datasets of subjective nature and for experiments in which both measurements are collected. We analyze and compare the outcomes of both types of experimental protocols in terms of time and accuracy in a set of simulations and experiments with benchmark and real-world image quality assessment datasets, showing the necessity of scaling and the advantages of each protocol and mixing. Although most of our examples focus on image quality assessment, our findings generalize to any other subjective quality-of-experience task.</description><subject>dataset fusion</subject><subject>Datasets</subject><subject>Engineering Sciences</subject><subject>Experiments</subject><subject>image and video quality assessment</subject><subject>Image quality</subject><subject>Observers</subject><subject>pairwise comparisons</subject><subject>Probabilistic logic</subject><subject>Protocols</subject><subject>Psychometric scaling</subject><subject>Quality assessment</subject><subject>rating</subject><subject>Signal and Image processing</subject><subject>Training</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU1rHDEMhk1paT7ae6FQDL2kh9lYtsf2nEpYmiaw0KRNzkbrsVuHmfFmPNOSf18vu9lDThLSI_FKLyEfgC0AWHN-d32z4AyaBW-EAiZekWNoJFSMSf665KzWlQbZHJGTnB8YA1mDekuOBEhtjGyOydfLMfX0BuP4L2ZPl6nf4BhzGjLFoaU_cYrDbzolivR-iCH6lt7O2MXpif5y2Pl35E3ALvv3-3hK7i-_3S2vqtWP79fLi1XlJBdT5dha-iACIl8r5YLkxrTIfd0qoRSXpohsBHdao3ZBMVAYRIu1Vl46hCBOyZfd3j_Y2c0YexyfbMJory5WdltjXDJmlPgLhT3bsZsxPc4-T7aP2fmuw8GnOVvOjWiMFKAK-vkF-pDmcSiXWC6gvFYLXReK7Sg3ppxHHw4KgNmtEbYYYbdG2L0RZeTTfvG87n17GHj-fAE-7oDovT-0jQGz1fUfrrWJHg</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Perez-Ortiz, Maria</creator><creator>Mikhailiuk, Aliaksei</creator><creator>Zerman, Emin</creator><creator>Hulusic, Vedad</creator><creator>Valenzise, Giuseppe</creator><creator>Mantiuk, Rafal K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1302-6093</orcidid><orcidid>https://orcid.org/0000-0002-3675-095X</orcidid><orcidid>https://orcid.org/0000-0002-5840-5743</orcidid><orcidid>https://orcid.org/0000-0001-9757-6644</orcidid><orcidid>https://orcid.org/0000-0002-3210-8978</orcidid><orcidid>https://orcid.org/0000-0003-2353-0349</orcidid></search><sort><creationdate>20200101</creationdate><title>From Pairwise Comparisons and Rating to a Unified Quality Scale</title><author>Perez-Ortiz, Maria ; Mikhailiuk, Aliaksei ; Zerman, Emin ; Hulusic, Vedad ; Valenzise, Giuseppe ; Mantiuk, Rafal K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-c0b4ef3faa2b66cf4288da2e5d6366248149932c77a7cf6016af3da576e4ca1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>dataset fusion</topic><topic>Datasets</topic><topic>Engineering Sciences</topic><topic>Experiments</topic><topic>image and video quality assessment</topic><topic>Image quality</topic><topic>Observers</topic><topic>pairwise comparisons</topic><topic>Probabilistic logic</topic><topic>Protocols</topic><topic>Psychometric scaling</topic><topic>Quality assessment</topic><topic>rating</topic><topic>Signal and Image processing</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perez-Ortiz, Maria</creatorcontrib><creatorcontrib>Mikhailiuk, Aliaksei</creatorcontrib><creatorcontrib>Zerman, Emin</creatorcontrib><creatorcontrib>Hulusic, Vedad</creatorcontrib><creatorcontrib>Valenzise, Giuseppe</creatorcontrib><creatorcontrib>Mantiuk, Rafal K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Perez-Ortiz, Maria</au><au>Mikhailiuk, Aliaksei</au><au>Zerman, Emin</au><au>Hulusic, Vedad</au><au>Valenzise, Giuseppe</au><au>Mantiuk, Rafal K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From Pairwise Comparisons and Rating to a Unified Quality Scale</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>29</volume><spage>1139</spage><epage>1151</epage><pages>1139-1151</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>The goal of psychometric scaling is the quantification of perceptual experiences, understanding the relationship between an external stimulus, the internal representation and the response. In this paper, we propose a probabilistic framework to fuse the outcome of different psychophysical experimental protocols, namely rating and pairwise comparisons experiments. Such a method can be used for merging existing datasets of subjective nature and for experiments in which both measurements are collected. We analyze and compare the outcomes of both types of experimental protocols in terms of time and accuracy in a set of simulations and experiments with benchmark and real-world image quality assessment datasets, showing the necessity of scaling and the advantages of each protocol and mixing. Although most of our examples focus on image quality assessment, our findings generalize to any other subjective quality-of-experience task.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>31478849</pmid><doi>10.1109/TIP.2019.2936103</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1302-6093</orcidid><orcidid>https://orcid.org/0000-0002-3675-095X</orcidid><orcidid>https://orcid.org/0000-0002-5840-5743</orcidid><orcidid>https://orcid.org/0000-0001-9757-6644</orcidid><orcidid>https://orcid.org/0000-0002-3210-8978</orcidid><orcidid>https://orcid.org/0000-0003-2353-0349</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2020-01, Vol.29, p.1139-1151 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_proquest_miscellaneous_2283984316 |
source | IEEE Electronic Library (IEL) |
subjects | dataset fusion Datasets Engineering Sciences Experiments image and video quality assessment Image quality Observers pairwise comparisons Probabilistic logic Protocols Psychometric scaling Quality assessment rating Signal and Image processing Training |
title | From Pairwise Comparisons and Rating to a Unified Quality Scale |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T07%3A08%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20Pairwise%20Comparisons%20and%20Rating%20to%20a%20Unified%20Quality%20Scale&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Perez-Ortiz,%20Maria&rft.date=2020-01-01&rft.volume=29&rft.spage=1139&rft.epage=1151&rft.pages=1139-1151&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2019.2936103&rft_dat=%3Cproquest_RIE%3E2283984316%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2312017375&rft_id=info:pmid/31478849&rft_ieee_id=8818316&rfr_iscdi=true |