From Pairwise Comparisons and Rating to a Unified Quality Scale

The goal of psychometric scaling is the quantification of perceptual experiences, understanding the relationship between an external stimulus, the internal representation and the response. In this paper, we propose a probabilistic framework to fuse the outcome of different psychophysical experimenta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2020-01, Vol.29, p.1139-1151
Hauptverfasser: Perez-Ortiz, Maria, Mikhailiuk, Aliaksei, Zerman, Emin, Hulusic, Vedad, Valenzise, Giuseppe, Mantiuk, Rafal K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1151
container_issue
container_start_page 1139
container_title IEEE transactions on image processing
container_volume 29
creator Perez-Ortiz, Maria
Mikhailiuk, Aliaksei
Zerman, Emin
Hulusic, Vedad
Valenzise, Giuseppe
Mantiuk, Rafal K.
description The goal of psychometric scaling is the quantification of perceptual experiences, understanding the relationship between an external stimulus, the internal representation and the response. In this paper, we propose a probabilistic framework to fuse the outcome of different psychophysical experimental protocols, namely rating and pairwise comparisons experiments. Such a method can be used for merging existing datasets of subjective nature and for experiments in which both measurements are collected. We analyze and compare the outcomes of both types of experimental protocols in terms of time and accuracy in a set of simulations and experiments with benchmark and real-world image quality assessment datasets, showing the necessity of scaling and the advantages of each protocol and mixing. Although most of our examples focus on image quality assessment, our findings generalize to any other subjective quality-of-experience task.
doi_str_mv 10.1109/TIP.2019.2936103
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2283984316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8818316</ieee_id><sourcerecordid>2283984316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-c0b4ef3faa2b66cf4288da2e5d6366248149932c77a7cf6016af3da576e4ca1f3</originalsourceid><addsrcrecordid>eNpdkU1rHDEMhk1paT7ae6FQDL2kh9lYtsf2nEpYmiaw0KRNzkbrsVuHmfFmPNOSf18vu9lDThLSI_FKLyEfgC0AWHN-d32z4AyaBW-EAiZekWNoJFSMSf665KzWlQbZHJGTnB8YA1mDekuOBEhtjGyOydfLMfX0BuP4L2ZPl6nf4BhzGjLFoaU_cYrDbzolivR-iCH6lt7O2MXpif5y2Pl35E3ALvv3-3hK7i-_3S2vqtWP79fLi1XlJBdT5dha-iACIl8r5YLkxrTIfd0qoRSXpohsBHdao3ZBMVAYRIu1Vl46hCBOyZfd3j_Y2c0YexyfbMJory5WdltjXDJmlPgLhT3bsZsxPc4-T7aP2fmuw8GnOVvOjWiMFKAK-vkF-pDmcSiXWC6gvFYLXReK7Sg3ppxHHw4KgNmtEbYYYbdG2L0RZeTTfvG87n17GHj-fAE-7oDovT-0jQGz1fUfrrWJHg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312017375</pqid></control><display><type>article</type><title>From Pairwise Comparisons and Rating to a Unified Quality Scale</title><source>IEEE Electronic Library (IEL)</source><creator>Perez-Ortiz, Maria ; Mikhailiuk, Aliaksei ; Zerman, Emin ; Hulusic, Vedad ; Valenzise, Giuseppe ; Mantiuk, Rafal K.</creator><creatorcontrib>Perez-Ortiz, Maria ; Mikhailiuk, Aliaksei ; Zerman, Emin ; Hulusic, Vedad ; Valenzise, Giuseppe ; Mantiuk, Rafal K.</creatorcontrib><description>The goal of psychometric scaling is the quantification of perceptual experiences, understanding the relationship between an external stimulus, the internal representation and the response. In this paper, we propose a probabilistic framework to fuse the outcome of different psychophysical experimental protocols, namely rating and pairwise comparisons experiments. Such a method can be used for merging existing datasets of subjective nature and for experiments in which both measurements are collected. We analyze and compare the outcomes of both types of experimental protocols in terms of time and accuracy in a set of simulations and experiments with benchmark and real-world image quality assessment datasets, showing the necessity of scaling and the advantages of each protocol and mixing. Although most of our examples focus on image quality assessment, our findings generalize to any other subjective quality-of-experience task.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2019.2936103</identifier><identifier>PMID: 31478849</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>dataset fusion ; Datasets ; Engineering Sciences ; Experiments ; image and video quality assessment ; Image quality ; Observers ; pairwise comparisons ; Probabilistic logic ; Protocols ; Psychometric scaling ; Quality assessment ; rating ; Signal and Image processing ; Training</subject><ispartof>IEEE transactions on image processing, 2020-01, Vol.29, p.1139-1151</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-c0b4ef3faa2b66cf4288da2e5d6366248149932c77a7cf6016af3da576e4ca1f3</citedby><cites>FETCH-LOGICAL-c423t-c0b4ef3faa2b66cf4288da2e5d6366248149932c77a7cf6016af3da576e4ca1f3</cites><orcidid>0000-0003-1302-6093 ; 0000-0002-3675-095X ; 0000-0002-5840-5743 ; 0000-0001-9757-6644 ; 0000-0002-3210-8978 ; 0000-0003-2353-0349</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8818316$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8818316$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31478849$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02400863$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Perez-Ortiz, Maria</creatorcontrib><creatorcontrib>Mikhailiuk, Aliaksei</creatorcontrib><creatorcontrib>Zerman, Emin</creatorcontrib><creatorcontrib>Hulusic, Vedad</creatorcontrib><creatorcontrib>Valenzise, Giuseppe</creatorcontrib><creatorcontrib>Mantiuk, Rafal K.</creatorcontrib><title>From Pairwise Comparisons and Rating to a Unified Quality Scale</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>The goal of psychometric scaling is the quantification of perceptual experiences, understanding the relationship between an external stimulus, the internal representation and the response. In this paper, we propose a probabilistic framework to fuse the outcome of different psychophysical experimental protocols, namely rating and pairwise comparisons experiments. Such a method can be used for merging existing datasets of subjective nature and for experiments in which both measurements are collected. We analyze and compare the outcomes of both types of experimental protocols in terms of time and accuracy in a set of simulations and experiments with benchmark and real-world image quality assessment datasets, showing the necessity of scaling and the advantages of each protocol and mixing. Although most of our examples focus on image quality assessment, our findings generalize to any other subjective quality-of-experience task.</description><subject>dataset fusion</subject><subject>Datasets</subject><subject>Engineering Sciences</subject><subject>Experiments</subject><subject>image and video quality assessment</subject><subject>Image quality</subject><subject>Observers</subject><subject>pairwise comparisons</subject><subject>Probabilistic logic</subject><subject>Protocols</subject><subject>Psychometric scaling</subject><subject>Quality assessment</subject><subject>rating</subject><subject>Signal and Image processing</subject><subject>Training</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU1rHDEMhk1paT7ae6FQDL2kh9lYtsf2nEpYmiaw0KRNzkbrsVuHmfFmPNOSf18vu9lDThLSI_FKLyEfgC0AWHN-d32z4AyaBW-EAiZekWNoJFSMSf665KzWlQbZHJGTnB8YA1mDekuOBEhtjGyOydfLMfX0BuP4L2ZPl6nf4BhzGjLFoaU_cYrDbzolivR-iCH6lt7O2MXpif5y2Pl35E3ALvv3-3hK7i-_3S2vqtWP79fLi1XlJBdT5dha-iACIl8r5YLkxrTIfd0qoRSXpohsBHdao3ZBMVAYRIu1Vl46hCBOyZfd3j_Y2c0YexyfbMJory5WdltjXDJmlPgLhT3bsZsxPc4-T7aP2fmuw8GnOVvOjWiMFKAK-vkF-pDmcSiXWC6gvFYLXReK7Sg3ppxHHw4KgNmtEbYYYbdG2L0RZeTTfvG87n17GHj-fAE-7oDovT-0jQGz1fUfrrWJHg</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Perez-Ortiz, Maria</creator><creator>Mikhailiuk, Aliaksei</creator><creator>Zerman, Emin</creator><creator>Hulusic, Vedad</creator><creator>Valenzise, Giuseppe</creator><creator>Mantiuk, Rafal K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1302-6093</orcidid><orcidid>https://orcid.org/0000-0002-3675-095X</orcidid><orcidid>https://orcid.org/0000-0002-5840-5743</orcidid><orcidid>https://orcid.org/0000-0001-9757-6644</orcidid><orcidid>https://orcid.org/0000-0002-3210-8978</orcidid><orcidid>https://orcid.org/0000-0003-2353-0349</orcidid></search><sort><creationdate>20200101</creationdate><title>From Pairwise Comparisons and Rating to a Unified Quality Scale</title><author>Perez-Ortiz, Maria ; Mikhailiuk, Aliaksei ; Zerman, Emin ; Hulusic, Vedad ; Valenzise, Giuseppe ; Mantiuk, Rafal K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-c0b4ef3faa2b66cf4288da2e5d6366248149932c77a7cf6016af3da576e4ca1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>dataset fusion</topic><topic>Datasets</topic><topic>Engineering Sciences</topic><topic>Experiments</topic><topic>image and video quality assessment</topic><topic>Image quality</topic><topic>Observers</topic><topic>pairwise comparisons</topic><topic>Probabilistic logic</topic><topic>Protocols</topic><topic>Psychometric scaling</topic><topic>Quality assessment</topic><topic>rating</topic><topic>Signal and Image processing</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perez-Ortiz, Maria</creatorcontrib><creatorcontrib>Mikhailiuk, Aliaksei</creatorcontrib><creatorcontrib>Zerman, Emin</creatorcontrib><creatorcontrib>Hulusic, Vedad</creatorcontrib><creatorcontrib>Valenzise, Giuseppe</creatorcontrib><creatorcontrib>Mantiuk, Rafal K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Perez-Ortiz, Maria</au><au>Mikhailiuk, Aliaksei</au><au>Zerman, Emin</au><au>Hulusic, Vedad</au><au>Valenzise, Giuseppe</au><au>Mantiuk, Rafal K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From Pairwise Comparisons and Rating to a Unified Quality Scale</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>29</volume><spage>1139</spage><epage>1151</epage><pages>1139-1151</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>The goal of psychometric scaling is the quantification of perceptual experiences, understanding the relationship between an external stimulus, the internal representation and the response. In this paper, we propose a probabilistic framework to fuse the outcome of different psychophysical experimental protocols, namely rating and pairwise comparisons experiments. Such a method can be used for merging existing datasets of subjective nature and for experiments in which both measurements are collected. We analyze and compare the outcomes of both types of experimental protocols in terms of time and accuracy in a set of simulations and experiments with benchmark and real-world image quality assessment datasets, showing the necessity of scaling and the advantages of each protocol and mixing. Although most of our examples focus on image quality assessment, our findings generalize to any other subjective quality-of-experience task.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>31478849</pmid><doi>10.1109/TIP.2019.2936103</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1302-6093</orcidid><orcidid>https://orcid.org/0000-0002-3675-095X</orcidid><orcidid>https://orcid.org/0000-0002-5840-5743</orcidid><orcidid>https://orcid.org/0000-0001-9757-6644</orcidid><orcidid>https://orcid.org/0000-0002-3210-8978</orcidid><orcidid>https://orcid.org/0000-0003-2353-0349</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2020-01, Vol.29, p.1139-1151
issn 1057-7149
1941-0042
language eng
recordid cdi_proquest_miscellaneous_2283984316
source IEEE Electronic Library (IEL)
subjects dataset fusion
Datasets
Engineering Sciences
Experiments
image and video quality assessment
Image quality
Observers
pairwise comparisons
Probabilistic logic
Protocols
Psychometric scaling
Quality assessment
rating
Signal and Image processing
Training
title From Pairwise Comparisons and Rating to a Unified Quality Scale
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T07%3A08%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20Pairwise%20Comparisons%20and%20Rating%20to%20a%20Unified%20Quality%20Scale&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Perez-Ortiz,%20Maria&rft.date=2020-01-01&rft.volume=29&rft.spage=1139&rft.epage=1151&rft.pages=1139-1151&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2019.2936103&rft_dat=%3Cproquest_RIE%3E2283984316%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2312017375&rft_id=info:pmid/31478849&rft_ieee_id=8818316&rfr_iscdi=true