Tailoring the Saccharomyces cerevisiae endoplasmic reticulum for functional assembly of terpene synthesis pathway

The endoplasmic reticulum (ER) is a dynamic organelle that synthesizes and folds proteins. An imbalance between the ER protein synthesis load and its folding capacity triggers the unfolded protein response, thereby restoring normal ER functions via size adjustment. Inspired by such inherent genetic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metabolic engineering 2019-12, Vol.56, p.50-59
Hauptverfasser: Kim, Jae-Eung, Jang, In-Seung, Son, So-Hee, Ko, Young-Joon, Cho, Byung-Kwan, Kim, Sun Chang, Lee, Ju Young
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 59
container_issue
container_start_page 50
container_title Metabolic engineering
container_volume 56
creator Kim, Jae-Eung
Jang, In-Seung
Son, So-Hee
Ko, Young-Joon
Cho, Byung-Kwan
Kim, Sun Chang
Lee, Ju Young
description The endoplasmic reticulum (ER) is a dynamic organelle that synthesizes and folds proteins. An imbalance between the ER protein synthesis load and its folding capacity triggers the unfolded protein response, thereby restoring normal ER functions via size adjustment. Inspired by such inherent genetic programming events, we engineered Saccharomyces cerevisiae to expand the ER by overexpressing a key ER size regulatory factor, INO2. ER space expansion enhanced ER protein synthesis and folding capacity, and relieved metabolic constraints imposed by the limited enzyme abundance. Harnessing the yeast ER for metabolic engineering, we ultimately increased the production of squalene and cytochrome P450-mediated protopanaxadiol by 71-fold and 8-fold, compared to their respective control strains without overexpression of INO2. Furthermore, genome-wide transcriptome analysis of the ER-expanded strain revealed that the significant improvement in terpene production was associated with global rewiring of the metabolic network. Therefore, the yeast ER can be engineered as a specialized compartment for enhancing terpene production, representing new possibilities for the high-level production of other value-added chemicals. •This study aims to harness yeast endoplasmic reticulum (ER) for functional assembly of challenging metabolic pathways.•ER expansion can lead to increased abundance of ER-associated enzymes and consequential improvement in metabolic capacity.•ER expansion increased production of squalene and cytochrome P450-mediated protopanaxadiol by 71- and 8-fold, respectively.•The squalene titer of 634 mg/L was achieved by shake flask fermentation, the highest titer reported to date in S. cerevisiae.•RNA-seq analysis provides novel frameworks for designing genetic network to construct a platform cell for terpene synthesis.
doi_str_mv 10.1016/j.ymben.2019.08.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2283976849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1096717619301831</els_id><sourcerecordid>2283976849</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-cb4d1a95621f9976ecf798bc1030cf870aa9dbd2b964d4c72bc1d50053e625e3</originalsourceid><addsrcrecordid>eNp9kD1v2zAQhokiRe06-QUBAo5drJL65tChMJK0QIAO9U5Qx1NNQyIVnuRC_75KnXjMdAfc-4F7GLuVIpFCll-Pydw36JNUSJWIOhEy-8DWUqhyW8k6v7rsVblin4mOQkhZKPmJrTKZ54WoszV73hvXhej8Hz4ekP82AAcTQz8DEgeMeHLkDHL0Ngydod4Bjzg6mLqp522IvJ08jC5403FDhH3TzTy0fMQ4oEdOs1-CyREfzHj4a-Zr9rE1HeHN69yw_cP9fvdj-_Tr8efu-9MW8rQYt9DkVhpVlKlslapKhLZSdQNSZALauhLGKNvYtFFlbnOo0uVkCyGKDMu0wGzDvpxjhxieJ6RR944Au854DBPpNK2zJbbO1SLNzlKIgShiq4foehNnLYV-Qa2P-j9q_YJai1ovqBfX3WvB1PRoL543tovg21mAy5cnh1ETOPSA1kWEUdvg3i34B1uqk_8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2283976849</pqid></control><display><type>article</type><title>Tailoring the Saccharomyces cerevisiae endoplasmic reticulum for functional assembly of terpene synthesis pathway</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Kim, Jae-Eung ; Jang, In-Seung ; Son, So-Hee ; Ko, Young-Joon ; Cho, Byung-Kwan ; Kim, Sun Chang ; Lee, Ju Young</creator><creatorcontrib>Kim, Jae-Eung ; Jang, In-Seung ; Son, So-Hee ; Ko, Young-Joon ; Cho, Byung-Kwan ; Kim, Sun Chang ; Lee, Ju Young</creatorcontrib><description>The endoplasmic reticulum (ER) is a dynamic organelle that synthesizes and folds proteins. An imbalance between the ER protein synthesis load and its folding capacity triggers the unfolded protein response, thereby restoring normal ER functions via size adjustment. Inspired by such inherent genetic programming events, we engineered Saccharomyces cerevisiae to expand the ER by overexpressing a key ER size regulatory factor, INO2. ER space expansion enhanced ER protein synthesis and folding capacity, and relieved metabolic constraints imposed by the limited enzyme abundance. Harnessing the yeast ER for metabolic engineering, we ultimately increased the production of squalene and cytochrome P450-mediated protopanaxadiol by 71-fold and 8-fold, compared to their respective control strains without overexpression of INO2. Furthermore, genome-wide transcriptome analysis of the ER-expanded strain revealed that the significant improvement in terpene production was associated with global rewiring of the metabolic network. Therefore, the yeast ER can be engineered as a specialized compartment for enhancing terpene production, representing new possibilities for the high-level production of other value-added chemicals. •This study aims to harness yeast endoplasmic reticulum (ER) for functional assembly of challenging metabolic pathways.•ER expansion can lead to increased abundance of ER-associated enzymes and consequential improvement in metabolic capacity.•ER expansion increased production of squalene and cytochrome P450-mediated protopanaxadiol by 71- and 8-fold, respectively.•The squalene titer of 634 mg/L was achieved by shake flask fermentation, the highest titer reported to date in S. cerevisiae.•RNA-seq analysis provides novel frameworks for designing genetic network to construct a platform cell for terpene synthesis.</description><identifier>ISSN: 1096-7176</identifier><identifier>EISSN: 1096-7184</identifier><identifier>DOI: 10.1016/j.ymben.2019.08.013</identifier><identifier>PMID: 31445083</identifier><language>eng</language><publisher>Belgium: Elsevier Inc</publisher><subject>Basic Helix-Loop-Helix Transcription Factors - genetics ; Basic Helix-Loop-Helix Transcription Factors - metabolism ; Cytochrome P-450 Enzyme System - genetics ; Cytochrome P-450 Enzyme System - metabolism ; Endoplasmic Reticulum - genetics ; Endoplasmic Reticulum - metabolism ; Metabolic Engineering ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Terpenes - metabolism</subject><ispartof>Metabolic engineering, 2019-12, Vol.56, p.50-59</ispartof><rights>2019 International Metabolic Engineering Society</rights><rights>Copyright © 2019 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-cb4d1a95621f9976ecf798bc1030cf870aa9dbd2b964d4c72bc1d50053e625e3</citedby><cites>FETCH-LOGICAL-c425t-cb4d1a95621f9976ecf798bc1030cf870aa9dbd2b964d4c72bc1d50053e625e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1096717619301831$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31445083$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Jae-Eung</creatorcontrib><creatorcontrib>Jang, In-Seung</creatorcontrib><creatorcontrib>Son, So-Hee</creatorcontrib><creatorcontrib>Ko, Young-Joon</creatorcontrib><creatorcontrib>Cho, Byung-Kwan</creatorcontrib><creatorcontrib>Kim, Sun Chang</creatorcontrib><creatorcontrib>Lee, Ju Young</creatorcontrib><title>Tailoring the Saccharomyces cerevisiae endoplasmic reticulum for functional assembly of terpene synthesis pathway</title><title>Metabolic engineering</title><addtitle>Metab Eng</addtitle><description>The endoplasmic reticulum (ER) is a dynamic organelle that synthesizes and folds proteins. An imbalance between the ER protein synthesis load and its folding capacity triggers the unfolded protein response, thereby restoring normal ER functions via size adjustment. Inspired by such inherent genetic programming events, we engineered Saccharomyces cerevisiae to expand the ER by overexpressing a key ER size regulatory factor, INO2. ER space expansion enhanced ER protein synthesis and folding capacity, and relieved metabolic constraints imposed by the limited enzyme abundance. Harnessing the yeast ER for metabolic engineering, we ultimately increased the production of squalene and cytochrome P450-mediated protopanaxadiol by 71-fold and 8-fold, compared to their respective control strains without overexpression of INO2. Furthermore, genome-wide transcriptome analysis of the ER-expanded strain revealed that the significant improvement in terpene production was associated with global rewiring of the metabolic network. Therefore, the yeast ER can be engineered as a specialized compartment for enhancing terpene production, representing new possibilities for the high-level production of other value-added chemicals. •This study aims to harness yeast endoplasmic reticulum (ER) for functional assembly of challenging metabolic pathways.•ER expansion can lead to increased abundance of ER-associated enzymes and consequential improvement in metabolic capacity.•ER expansion increased production of squalene and cytochrome P450-mediated protopanaxadiol by 71- and 8-fold, respectively.•The squalene titer of 634 mg/L was achieved by shake flask fermentation, the highest titer reported to date in S. cerevisiae.•RNA-seq analysis provides novel frameworks for designing genetic network to construct a platform cell for terpene synthesis.</description><subject>Basic Helix-Loop-Helix Transcription Factors - genetics</subject><subject>Basic Helix-Loop-Helix Transcription Factors - metabolism</subject><subject>Cytochrome P-450 Enzyme System - genetics</subject><subject>Cytochrome P-450 Enzyme System - metabolism</subject><subject>Endoplasmic Reticulum - genetics</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>Metabolic Engineering</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Terpenes - metabolism</subject><issn>1096-7176</issn><issn>1096-7184</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kD1v2zAQhokiRe06-QUBAo5drJL65tChMJK0QIAO9U5Qx1NNQyIVnuRC_75KnXjMdAfc-4F7GLuVIpFCll-Pydw36JNUSJWIOhEy-8DWUqhyW8k6v7rsVblin4mOQkhZKPmJrTKZ54WoszV73hvXhej8Hz4ekP82AAcTQz8DEgeMeHLkDHL0Ngydod4Bjzg6mLqp522IvJ08jC5403FDhH3TzTy0fMQ4oEdOs1-CyREfzHj4a-Zr9rE1HeHN69yw_cP9fvdj-_Tr8efu-9MW8rQYt9DkVhpVlKlslapKhLZSdQNSZALauhLGKNvYtFFlbnOo0uVkCyGKDMu0wGzDvpxjhxieJ6RR944Au854DBPpNK2zJbbO1SLNzlKIgShiq4foehNnLYV-Qa2P-j9q_YJai1ovqBfX3WvB1PRoL543tovg21mAy5cnh1ETOPSA1kWEUdvg3i34B1uqk_8</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Kim, Jae-Eung</creator><creator>Jang, In-Seung</creator><creator>Son, So-Hee</creator><creator>Ko, Young-Joon</creator><creator>Cho, Byung-Kwan</creator><creator>Kim, Sun Chang</creator><creator>Lee, Ju Young</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201912</creationdate><title>Tailoring the Saccharomyces cerevisiae endoplasmic reticulum for functional assembly of terpene synthesis pathway</title><author>Kim, Jae-Eung ; Jang, In-Seung ; Son, So-Hee ; Ko, Young-Joon ; Cho, Byung-Kwan ; Kim, Sun Chang ; Lee, Ju Young</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-cb4d1a95621f9976ecf798bc1030cf870aa9dbd2b964d4c72bc1d50053e625e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Basic Helix-Loop-Helix Transcription Factors - genetics</topic><topic>Basic Helix-Loop-Helix Transcription Factors - metabolism</topic><topic>Cytochrome P-450 Enzyme System - genetics</topic><topic>Cytochrome P-450 Enzyme System - metabolism</topic><topic>Endoplasmic Reticulum - genetics</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>Metabolic Engineering</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Terpenes - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Jae-Eung</creatorcontrib><creatorcontrib>Jang, In-Seung</creatorcontrib><creatorcontrib>Son, So-Hee</creatorcontrib><creatorcontrib>Ko, Young-Joon</creatorcontrib><creatorcontrib>Cho, Byung-Kwan</creatorcontrib><creatorcontrib>Kim, Sun Chang</creatorcontrib><creatorcontrib>Lee, Ju Young</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Metabolic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Jae-Eung</au><au>Jang, In-Seung</au><au>Son, So-Hee</au><au>Ko, Young-Joon</au><au>Cho, Byung-Kwan</au><au>Kim, Sun Chang</au><au>Lee, Ju Young</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tailoring the Saccharomyces cerevisiae endoplasmic reticulum for functional assembly of terpene synthesis pathway</atitle><jtitle>Metabolic engineering</jtitle><addtitle>Metab Eng</addtitle><date>2019-12</date><risdate>2019</risdate><volume>56</volume><spage>50</spage><epage>59</epage><pages>50-59</pages><issn>1096-7176</issn><eissn>1096-7184</eissn><abstract>The endoplasmic reticulum (ER) is a dynamic organelle that synthesizes and folds proteins. An imbalance between the ER protein synthesis load and its folding capacity triggers the unfolded protein response, thereby restoring normal ER functions via size adjustment. Inspired by such inherent genetic programming events, we engineered Saccharomyces cerevisiae to expand the ER by overexpressing a key ER size regulatory factor, INO2. ER space expansion enhanced ER protein synthesis and folding capacity, and relieved metabolic constraints imposed by the limited enzyme abundance. Harnessing the yeast ER for metabolic engineering, we ultimately increased the production of squalene and cytochrome P450-mediated protopanaxadiol by 71-fold and 8-fold, compared to their respective control strains without overexpression of INO2. Furthermore, genome-wide transcriptome analysis of the ER-expanded strain revealed that the significant improvement in terpene production was associated with global rewiring of the metabolic network. Therefore, the yeast ER can be engineered as a specialized compartment for enhancing terpene production, representing new possibilities for the high-level production of other value-added chemicals. •This study aims to harness yeast endoplasmic reticulum (ER) for functional assembly of challenging metabolic pathways.•ER expansion can lead to increased abundance of ER-associated enzymes and consequential improvement in metabolic capacity.•ER expansion increased production of squalene and cytochrome P450-mediated protopanaxadiol by 71- and 8-fold, respectively.•The squalene titer of 634 mg/L was achieved by shake flask fermentation, the highest titer reported to date in S. cerevisiae.•RNA-seq analysis provides novel frameworks for designing genetic network to construct a platform cell for terpene synthesis.</abstract><cop>Belgium</cop><pub>Elsevier Inc</pub><pmid>31445083</pmid><doi>10.1016/j.ymben.2019.08.013</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1096-7176
ispartof Metabolic engineering, 2019-12, Vol.56, p.50-59
issn 1096-7176
1096-7184
language eng
recordid cdi_proquest_miscellaneous_2283976849
source MEDLINE; Elsevier ScienceDirect Journals
subjects Basic Helix-Loop-Helix Transcription Factors - genetics
Basic Helix-Loop-Helix Transcription Factors - metabolism
Cytochrome P-450 Enzyme System - genetics
Cytochrome P-450 Enzyme System - metabolism
Endoplasmic Reticulum - genetics
Endoplasmic Reticulum - metabolism
Metabolic Engineering
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Terpenes - metabolism
title Tailoring the Saccharomyces cerevisiae endoplasmic reticulum for functional assembly of terpene synthesis pathway
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A17%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tailoring%20the%20Saccharomyces%20cerevisiae%20endoplasmic%20reticulum%20for%20functional%20assembly%20of%20terpene%20synthesis%20pathway&rft.jtitle=Metabolic%20engineering&rft.au=Kim,%20Jae-Eung&rft.date=2019-12&rft.volume=56&rft.spage=50&rft.epage=59&rft.pages=50-59&rft.issn=1096-7176&rft.eissn=1096-7184&rft_id=info:doi/10.1016/j.ymben.2019.08.013&rft_dat=%3Cproquest_cross%3E2283976849%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2283976849&rft_id=info:pmid/31445083&rft_els_id=S1096717619301831&rfr_iscdi=true