Graphene’s Partial Transparency to van der Waals and Electrostatic Interactions

Graphene is the thinnest known two-dimensional (2D) material. This thinness is responsible for graphene’s well-known optical transparency. In addition to being transparent to light, its extreme thinness and nonpolar nature also render graphene partially transparent to van der Waals and electrostatic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2019-09, Vol.35 (38), p.12306-12316
Hauptverfasser: Ghoshal, Debjit, Jain, Rishabh, Koratkar, Nikhil A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12316
container_issue 38
container_start_page 12306
container_title Langmuir
container_volume 35
creator Ghoshal, Debjit
Jain, Rishabh
Koratkar, Nikhil A
description Graphene is the thinnest known two-dimensional (2D) material. This thinness is responsible for graphene’s well-known optical transparency. In addition to being transparent to light, its extreme thinness and nonpolar nature also render graphene partially transparent to van der Waals and electrostatic interactions. This enables media present on opposite sides of a graphene sheet to sense or feel each other and be influenced by each other. Such crosstalk between materials separated by an impermeable barrier is impossible for typical barrier or coating materials that are usually thick enough to completely screen out such interactions. In this article, we review graphene’s partial transparency to atomic interactions at the liquid–solid, solid–solid, and liquid–liquid interfaces. We compare graphene with other 2D materials such as hexagonal boron nitride and show that the extent of graphene’s transparency is strongly dependent on the nature and interaction range of the materials placed on opposite sides of the graphene layer. We end with recommendations for future research to better understand the underlying science and to develop practical applications of this exciting phenomena.
doi_str_mv 10.1021/acs.langmuir.9b01887
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2283310466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2283310466</sourcerecordid><originalsourceid>FETCH-LOGICAL-a385t-8b41faad0bb966cd6b6a33548e16b27f2622cec338cc22518e32965e6b15de143</originalsourceid><addsrcrecordid>eNp9kE1OwzAQRi0EglK4AUJesknxXxxniSoolSoBUhHLaOJMISh1iu0gdcc1uB4nIVVblqxm875vZh4hF5yNOBP8GmwYNeBel13tR3nJuDHZARnwVLAkNSI7JAOWKZlkSssTchrCO2Mslyo_JieSq0xxzgbkaeJh9YYOf76-A30EH2to6NyDCyvw6OyaxpZ-gqMVevoC0AQKrqK3Ddro2xAh1pZOXUQPNtatC2fkaNFTeL6bQ_J8dzsf3yezh8l0fDNLQJo0JqZUfAFQsbLMtbaVLjVImSqDXJciWwgthEUrpbFWiJQblCLXKeqSpxVyJYfkatu78u1HhyEWyzpYbHon2HahEMJIyZnSukfVFrX9xcHjolj5egl-XXBWbGQWvcxiL7PYyexjl7sNXbnE6i-0t9cDbAts4u9t513_8P-dv_SZhXY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2283310466</pqid></control><display><type>article</type><title>Graphene’s Partial Transparency to van der Waals and Electrostatic Interactions</title><source>American Chemical Society Journals</source><creator>Ghoshal, Debjit ; Jain, Rishabh ; Koratkar, Nikhil A</creator><creatorcontrib>Ghoshal, Debjit ; Jain, Rishabh ; Koratkar, Nikhil A</creatorcontrib><description>Graphene is the thinnest known two-dimensional (2D) material. This thinness is responsible for graphene’s well-known optical transparency. In addition to being transparent to light, its extreme thinness and nonpolar nature also render graphene partially transparent to van der Waals and electrostatic interactions. This enables media present on opposite sides of a graphene sheet to sense or feel each other and be influenced by each other. Such crosstalk between materials separated by an impermeable barrier is impossible for typical barrier or coating materials that are usually thick enough to completely screen out such interactions. In this article, we review graphene’s partial transparency to atomic interactions at the liquid–solid, solid–solid, and liquid–liquid interfaces. We compare graphene with other 2D materials such as hexagonal boron nitride and show that the extent of graphene’s transparency is strongly dependent on the nature and interaction range of the materials placed on opposite sides of the graphene layer. We end with recommendations for future research to better understand the underlying science and to develop practical applications of this exciting phenomena.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.9b01887</identifier><identifier>PMID: 31474110</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Langmuir, 2019-09, Vol.35 (38), p.12306-12316</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a385t-8b41faad0bb966cd6b6a33548e16b27f2622cec338cc22518e32965e6b15de143</citedby><cites>FETCH-LOGICAL-a385t-8b41faad0bb966cd6b6a33548e16b27f2622cec338cc22518e32965e6b15de143</cites><orcidid>0000-0002-4080-3786</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.9b01887$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.langmuir.9b01887$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31474110$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghoshal, Debjit</creatorcontrib><creatorcontrib>Jain, Rishabh</creatorcontrib><creatorcontrib>Koratkar, Nikhil A</creatorcontrib><title>Graphene’s Partial Transparency to van der Waals and Electrostatic Interactions</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Graphene is the thinnest known two-dimensional (2D) material. This thinness is responsible for graphene’s well-known optical transparency. In addition to being transparent to light, its extreme thinness and nonpolar nature also render graphene partially transparent to van der Waals and electrostatic interactions. This enables media present on opposite sides of a graphene sheet to sense or feel each other and be influenced by each other. Such crosstalk between materials separated by an impermeable barrier is impossible for typical barrier or coating materials that are usually thick enough to completely screen out such interactions. In this article, we review graphene’s partial transparency to atomic interactions at the liquid–solid, solid–solid, and liquid–liquid interfaces. We compare graphene with other 2D materials such as hexagonal boron nitride and show that the extent of graphene’s transparency is strongly dependent on the nature and interaction range of the materials placed on opposite sides of the graphene layer. We end with recommendations for future research to better understand the underlying science and to develop practical applications of this exciting phenomena.</description><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQRi0EglK4AUJesknxXxxniSoolSoBUhHLaOJMISh1iu0gdcc1uB4nIVVblqxm875vZh4hF5yNOBP8GmwYNeBel13tR3nJuDHZARnwVLAkNSI7JAOWKZlkSssTchrCO2Mslyo_JieSq0xxzgbkaeJh9YYOf76-A30EH2to6NyDCyvw6OyaxpZ-gqMVevoC0AQKrqK3Ddro2xAh1pZOXUQPNtatC2fkaNFTeL6bQ_J8dzsf3yezh8l0fDNLQJo0JqZUfAFQsbLMtbaVLjVImSqDXJciWwgthEUrpbFWiJQblCLXKeqSpxVyJYfkatu78u1HhyEWyzpYbHon2HahEMJIyZnSukfVFrX9xcHjolj5egl-XXBWbGQWvcxiL7PYyexjl7sNXbnE6i-0t9cDbAts4u9t513_8P-dv_SZhXY</recordid><startdate>20190924</startdate><enddate>20190924</enddate><creator>Ghoshal, Debjit</creator><creator>Jain, Rishabh</creator><creator>Koratkar, Nikhil A</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4080-3786</orcidid></search><sort><creationdate>20190924</creationdate><title>Graphene’s Partial Transparency to van der Waals and Electrostatic Interactions</title><author>Ghoshal, Debjit ; Jain, Rishabh ; Koratkar, Nikhil A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a385t-8b41faad0bb966cd6b6a33548e16b27f2622cec338cc22518e32965e6b15de143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghoshal, Debjit</creatorcontrib><creatorcontrib>Jain, Rishabh</creatorcontrib><creatorcontrib>Koratkar, Nikhil A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghoshal, Debjit</au><au>Jain, Rishabh</au><au>Koratkar, Nikhil A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphene’s Partial Transparency to van der Waals and Electrostatic Interactions</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2019-09-24</date><risdate>2019</risdate><volume>35</volume><issue>38</issue><spage>12306</spage><epage>12316</epage><pages>12306-12316</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>Graphene is the thinnest known two-dimensional (2D) material. This thinness is responsible for graphene’s well-known optical transparency. In addition to being transparent to light, its extreme thinness and nonpolar nature also render graphene partially transparent to van der Waals and electrostatic interactions. This enables media present on opposite sides of a graphene sheet to sense or feel each other and be influenced by each other. Such crosstalk between materials separated by an impermeable barrier is impossible for typical barrier or coating materials that are usually thick enough to completely screen out such interactions. In this article, we review graphene’s partial transparency to atomic interactions at the liquid–solid, solid–solid, and liquid–liquid interfaces. We compare graphene with other 2D materials such as hexagonal boron nitride and show that the extent of graphene’s transparency is strongly dependent on the nature and interaction range of the materials placed on opposite sides of the graphene layer. We end with recommendations for future research to better understand the underlying science and to develop practical applications of this exciting phenomena.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31474110</pmid><doi>10.1021/acs.langmuir.9b01887</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4080-3786</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2019-09, Vol.35 (38), p.12306-12316
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_2283310466
source American Chemical Society Journals
title Graphene’s Partial Transparency to van der Waals and Electrostatic Interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A13%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphene%E2%80%99s%20Partial%20Transparency%20to%20van%20der%20Waals%20and%20Electrostatic%20Interactions&rft.jtitle=Langmuir&rft.au=Ghoshal,%20Debjit&rft.date=2019-09-24&rft.volume=35&rft.issue=38&rft.spage=12306&rft.epage=12316&rft.pages=12306-12316&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.9b01887&rft_dat=%3Cproquest_cross%3E2283310466%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2283310466&rft_id=info:pmid/31474110&rfr_iscdi=true