Potential use of a thermal water cyanobacterium as raw material to produce biodiesel and pigments

Global energy demand is increasing every day and most is still derived from non-renewable sources. Therefore, sustainable alternatives are sought to produce biofuels, such as biodiesel. Several studies have demonstrated the potential of microalgae and cyanobacteria to produce biodiesel and pigments....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioprocess and biosystems engineering 2019-12, Vol.42 (12), p.2015-2022
Hauptverfasser: D’Alessandro, Emmanuel Bezerra, Soares, Aline Terra, de Oliveira D’Alessandro, Natália Cristina, Antoniosi Filho, Nelson Roberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2022
container_issue 12
container_start_page 2015
container_title Bioprocess and biosystems engineering
container_volume 42
creator D’Alessandro, Emmanuel Bezerra
Soares, Aline Terra
de Oliveira D’Alessandro, Natália Cristina
Antoniosi Filho, Nelson Roberto
description Global energy demand is increasing every day and most is still derived from non-renewable sources. Therefore, sustainable alternatives are sought to produce biofuels, such as biodiesel. Several studies have demonstrated the potential of microalgae and cyanobacteria to produce biodiesel and pigments. These pigments, such as lutein and astaxanthin, have a high commercial value and can economically support the production of biodiesel. However, few studies have explored the potential of cyanobacteria collected in thermal water. In these microorganisms, both biomass and metabolites production can be altered by the culture form. Thus, a cosmopolitan filamentous cyanobacterium ( Geitlerinema amphibium) from thermal water was collected and isolated to evaluate its potential to produce fatty acids, biodiesel, and pigments in two culture media. G. amphibium was cultured in WC (Wright's Cryptophyte) and BBM (Bold’s Basal Medium) media. Thermal stress (40 °C for 48 h) was applied to the medium, which generated higher productivity of the biomass in BBM. The cyanobacterium contained higher biodiesel content in the WC medium and higher pigment content in the BBM medium. Thermal stress increased the biodiesel content by 350%, but decreased pigment content. Two pigments with high commercial value (astaxanthin and lutein) were identified. G. amphibium produced up to 2.74 mg g −1 of astaxanthin and 5.49 mg g −1 of lutein, which is seven times more lutein than Marigold, currently the main raw material used commercially. Therefore, G. amphibium has the potential to produce biodiesel, astaxanthin, and lutein concomitantly.
doi_str_mv 10.1007/s00449-019-02196-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2283107832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2282739323</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-9cd387daf02b016400f4f098597012aa139bb5a8d305bf863b79934015378383</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxS0EoqXwBRiQJRaWwNmOY3tEiH9SJRi6W07ilFRJXOxEVb89Dm1BYmCwfPL93rvzQ-iSwC0BEHcBIE1VAiQeSlSW8CM0JRnhiciAHx9qrsgEnYWwAiBcUjhFE0ZSQQTIKTLvrrddX5sGD8FiV2GD-w_r2_iwMb31uNiazuWmiHU9tNgE7M0Gt2NvVPUOr70rh8LivHZlbYNtsOlKvK6XbXQO5-ikMk2wF_t7hhZPj4uHl2T-9vz6cD9PipTQPlFFyaQoTQU0B5KlAFVagZJcCSDUGMJUnnMjSwY8r2TGcqEUS-OXmJBMshm62dnGbT4HG3rd1qGwTWM664agKZWMQERpRK__oCs3-C4uN1JUMBWhSNEdVXgXgreVXvu6NX6rCegxf73LX8f89Xf-mkfR1d56yFtb_kgOgUeA7YAQW93S-t_Z_9h-AaMRjxw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2282739323</pqid></control><display><type>article</type><title>Potential use of a thermal water cyanobacterium as raw material to produce biodiesel and pigments</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>D’Alessandro, Emmanuel Bezerra ; Soares, Aline Terra ; de Oliveira D’Alessandro, Natália Cristina ; Antoniosi Filho, Nelson Roberto</creator><creatorcontrib>D’Alessandro, Emmanuel Bezerra ; Soares, Aline Terra ; de Oliveira D’Alessandro, Natália Cristina ; Antoniosi Filho, Nelson Roberto</creatorcontrib><description>Global energy demand is increasing every day and most is still derived from non-renewable sources. Therefore, sustainable alternatives are sought to produce biofuels, such as biodiesel. Several studies have demonstrated the potential of microalgae and cyanobacteria to produce biodiesel and pigments. These pigments, such as lutein and astaxanthin, have a high commercial value and can economically support the production of biodiesel. However, few studies have explored the potential of cyanobacteria collected in thermal water. In these microorganisms, both biomass and metabolites production can be altered by the culture form. Thus, a cosmopolitan filamentous cyanobacterium ( Geitlerinema amphibium) from thermal water was collected and isolated to evaluate its potential to produce fatty acids, biodiesel, and pigments in two culture media. G. amphibium was cultured in WC (Wright's Cryptophyte) and BBM (Bold’s Basal Medium) media. Thermal stress (40 °C for 48 h) was applied to the medium, which generated higher productivity of the biomass in BBM. The cyanobacterium contained higher biodiesel content in the WC medium and higher pigment content in the BBM medium. Thermal stress increased the biodiesel content by 350%, but decreased pigment content. Two pigments with high commercial value (astaxanthin and lutein) were identified. G. amphibium produced up to 2.74 mg g −1 of astaxanthin and 5.49 mg g −1 of lutein, which is seven times more lutein than Marigold, currently the main raw material used commercially. Therefore, G. amphibium has the potential to produce biodiesel, astaxanthin, and lutein concomitantly.</description><identifier>ISSN: 1615-7591</identifier><identifier>EISSN: 1615-7605</identifier><identifier>DOI: 10.1007/s00449-019-02196-5</identifier><identifier>PMID: 31471708</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Astaxanthin ; Biodiesel fuels ; Biofuels ; Biomass ; Biotechnology ; Chemistry ; Chemistry and Materials Science ; Culture Media ; Cyanobacteria ; Cyanobacteria - metabolism ; Diesel ; Energy demand ; Environmental Engineering/Biotechnology ; Fatty acids ; Fatty Acids - chemistry ; Food Science ; Industrial and Production Engineering ; Industrial Chemistry/Chemical Engineering ; Industrial Microbiology - methods ; Lipids ; Lutein ; Lutein - chemistry ; Metabolites ; Microalgae ; Microorganisms ; Pigments ; Pigments, Biological - biosynthesis ; Regression Analysis ; Research Paper ; Temperature ; Thermal stress ; Thermal water ; Time Factors ; Water - chemistry ; Xanthophylls - chemistry</subject><ispartof>Bioprocess and biosystems engineering, 2019-12, Vol.42 (12), p.2015-2022</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Bioprocess and Biosystems Engineering is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-9cd387daf02b016400f4f098597012aa139bb5a8d305bf863b79934015378383</citedby><cites>FETCH-LOGICAL-c412t-9cd387daf02b016400f4f098597012aa139bb5a8d305bf863b79934015378383</cites><orcidid>0000-0003-4294-5793</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00449-019-02196-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00449-019-02196-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31471708$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>D’Alessandro, Emmanuel Bezerra</creatorcontrib><creatorcontrib>Soares, Aline Terra</creatorcontrib><creatorcontrib>de Oliveira D’Alessandro, Natália Cristina</creatorcontrib><creatorcontrib>Antoniosi Filho, Nelson Roberto</creatorcontrib><title>Potential use of a thermal water cyanobacterium as raw material to produce biodiesel and pigments</title><title>Bioprocess and biosystems engineering</title><addtitle>Bioprocess Biosyst Eng</addtitle><addtitle>Bioprocess Biosyst Eng</addtitle><description>Global energy demand is increasing every day and most is still derived from non-renewable sources. Therefore, sustainable alternatives are sought to produce biofuels, such as biodiesel. Several studies have demonstrated the potential of microalgae and cyanobacteria to produce biodiesel and pigments. These pigments, such as lutein and astaxanthin, have a high commercial value and can economically support the production of biodiesel. However, few studies have explored the potential of cyanobacteria collected in thermal water. In these microorganisms, both biomass and metabolites production can be altered by the culture form. Thus, a cosmopolitan filamentous cyanobacterium ( Geitlerinema amphibium) from thermal water was collected and isolated to evaluate its potential to produce fatty acids, biodiesel, and pigments in two culture media. G. amphibium was cultured in WC (Wright's Cryptophyte) and BBM (Bold’s Basal Medium) media. Thermal stress (40 °C for 48 h) was applied to the medium, which generated higher productivity of the biomass in BBM. The cyanobacterium contained higher biodiesel content in the WC medium and higher pigment content in the BBM medium. Thermal stress increased the biodiesel content by 350%, but decreased pigment content. Two pigments with high commercial value (astaxanthin and lutein) were identified. G. amphibium produced up to 2.74 mg g −1 of astaxanthin and 5.49 mg g −1 of lutein, which is seven times more lutein than Marigold, currently the main raw material used commercially. Therefore, G. amphibium has the potential to produce biodiesel, astaxanthin, and lutein concomitantly.</description><subject>Astaxanthin</subject><subject>Biodiesel fuels</subject><subject>Biofuels</subject><subject>Biomass</subject><subject>Biotechnology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Culture Media</subject><subject>Cyanobacteria</subject><subject>Cyanobacteria - metabolism</subject><subject>Diesel</subject><subject>Energy demand</subject><subject>Environmental Engineering/Biotechnology</subject><subject>Fatty acids</subject><subject>Fatty Acids - chemistry</subject><subject>Food Science</subject><subject>Industrial and Production Engineering</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Industrial Microbiology - methods</subject><subject>Lipids</subject><subject>Lutein</subject><subject>Lutein - chemistry</subject><subject>Metabolites</subject><subject>Microalgae</subject><subject>Microorganisms</subject><subject>Pigments</subject><subject>Pigments, Biological - biosynthesis</subject><subject>Regression Analysis</subject><subject>Research Paper</subject><subject>Temperature</subject><subject>Thermal stress</subject><subject>Thermal water</subject><subject>Time Factors</subject><subject>Water - chemistry</subject><subject>Xanthophylls - chemistry</subject><issn>1615-7591</issn><issn>1615-7605</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kD9PwzAQxS0EoqXwBRiQJRaWwNmOY3tEiH9SJRi6W07ilFRJXOxEVb89Dm1BYmCwfPL93rvzQ-iSwC0BEHcBIE1VAiQeSlSW8CM0JRnhiciAHx9qrsgEnYWwAiBcUjhFE0ZSQQTIKTLvrrddX5sGD8FiV2GD-w_r2_iwMb31uNiazuWmiHU9tNgE7M0Gt2NvVPUOr70rh8LivHZlbYNtsOlKvK6XbXQO5-ikMk2wF_t7hhZPj4uHl2T-9vz6cD9PipTQPlFFyaQoTQU0B5KlAFVagZJcCSDUGMJUnnMjSwY8r2TGcqEUS-OXmJBMshm62dnGbT4HG3rd1qGwTWM664agKZWMQERpRK__oCs3-C4uN1JUMBWhSNEdVXgXgreVXvu6NX6rCegxf73LX8f89Xf-mkfR1d56yFtb_kgOgUeA7YAQW93S-t_Z_9h-AaMRjxw</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>D’Alessandro, Emmanuel Bezerra</creator><creator>Soares, Aline Terra</creator><creator>de Oliveira D’Alessandro, Natália Cristina</creator><creator>Antoniosi Filho, Nelson Roberto</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4294-5793</orcidid></search><sort><creationdate>20191201</creationdate><title>Potential use of a thermal water cyanobacterium as raw material to produce biodiesel and pigments</title><author>D’Alessandro, Emmanuel Bezerra ; Soares, Aline Terra ; de Oliveira D’Alessandro, Natália Cristina ; Antoniosi Filho, Nelson Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-9cd387daf02b016400f4f098597012aa139bb5a8d305bf863b79934015378383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Astaxanthin</topic><topic>Biodiesel fuels</topic><topic>Biofuels</topic><topic>Biomass</topic><topic>Biotechnology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Culture Media</topic><topic>Cyanobacteria</topic><topic>Cyanobacteria - metabolism</topic><topic>Diesel</topic><topic>Energy demand</topic><topic>Environmental Engineering/Biotechnology</topic><topic>Fatty acids</topic><topic>Fatty Acids - chemistry</topic><topic>Food Science</topic><topic>Industrial and Production Engineering</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Industrial Microbiology - methods</topic><topic>Lipids</topic><topic>Lutein</topic><topic>Lutein - chemistry</topic><topic>Metabolites</topic><topic>Microalgae</topic><topic>Microorganisms</topic><topic>Pigments</topic><topic>Pigments, Biological - biosynthesis</topic><topic>Regression Analysis</topic><topic>Research Paper</topic><topic>Temperature</topic><topic>Thermal stress</topic><topic>Thermal water</topic><topic>Time Factors</topic><topic>Water - chemistry</topic><topic>Xanthophylls - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>D’Alessandro, Emmanuel Bezerra</creatorcontrib><creatorcontrib>Soares, Aline Terra</creatorcontrib><creatorcontrib>de Oliveira D’Alessandro, Natália Cristina</creatorcontrib><creatorcontrib>Antoniosi Filho, Nelson Roberto</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Bioprocess and biosystems engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>D’Alessandro, Emmanuel Bezerra</au><au>Soares, Aline Terra</au><au>de Oliveira D’Alessandro, Natália Cristina</au><au>Antoniosi Filho, Nelson Roberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Potential use of a thermal water cyanobacterium as raw material to produce biodiesel and pigments</atitle><jtitle>Bioprocess and biosystems engineering</jtitle><stitle>Bioprocess Biosyst Eng</stitle><addtitle>Bioprocess Biosyst Eng</addtitle><date>2019-12-01</date><risdate>2019</risdate><volume>42</volume><issue>12</issue><spage>2015</spage><epage>2022</epage><pages>2015-2022</pages><issn>1615-7591</issn><eissn>1615-7605</eissn><abstract>Global energy demand is increasing every day and most is still derived from non-renewable sources. Therefore, sustainable alternatives are sought to produce biofuels, such as biodiesel. Several studies have demonstrated the potential of microalgae and cyanobacteria to produce biodiesel and pigments. These pigments, such as lutein and astaxanthin, have a high commercial value and can economically support the production of biodiesel. However, few studies have explored the potential of cyanobacteria collected in thermal water. In these microorganisms, both biomass and metabolites production can be altered by the culture form. Thus, a cosmopolitan filamentous cyanobacterium ( Geitlerinema amphibium) from thermal water was collected and isolated to evaluate its potential to produce fatty acids, biodiesel, and pigments in two culture media. G. amphibium was cultured in WC (Wright's Cryptophyte) and BBM (Bold’s Basal Medium) media. Thermal stress (40 °C for 48 h) was applied to the medium, which generated higher productivity of the biomass in BBM. The cyanobacterium contained higher biodiesel content in the WC medium and higher pigment content in the BBM medium. Thermal stress increased the biodiesel content by 350%, but decreased pigment content. Two pigments with high commercial value (astaxanthin and lutein) were identified. G. amphibium produced up to 2.74 mg g −1 of astaxanthin and 5.49 mg g −1 of lutein, which is seven times more lutein than Marigold, currently the main raw material used commercially. Therefore, G. amphibium has the potential to produce biodiesel, astaxanthin, and lutein concomitantly.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>31471708</pmid><doi>10.1007/s00449-019-02196-5</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4294-5793</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1615-7591
ispartof Bioprocess and biosystems engineering, 2019-12, Vol.42 (12), p.2015-2022
issn 1615-7591
1615-7605
language eng
recordid cdi_proquest_miscellaneous_2283107832
source MEDLINE; SpringerLink Journals
subjects Astaxanthin
Biodiesel fuels
Biofuels
Biomass
Biotechnology
Chemistry
Chemistry and Materials Science
Culture Media
Cyanobacteria
Cyanobacteria - metabolism
Diesel
Energy demand
Environmental Engineering/Biotechnology
Fatty acids
Fatty Acids - chemistry
Food Science
Industrial and Production Engineering
Industrial Chemistry/Chemical Engineering
Industrial Microbiology - methods
Lipids
Lutein
Lutein - chemistry
Metabolites
Microalgae
Microorganisms
Pigments
Pigments, Biological - biosynthesis
Regression Analysis
Research Paper
Temperature
Thermal stress
Thermal water
Time Factors
Water - chemistry
Xanthophylls - chemistry
title Potential use of a thermal water cyanobacterium as raw material to produce biodiesel and pigments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T05%3A55%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Potential%20use%20of%20a%20thermal%20water%20cyanobacterium%20as%20raw%20material%20to%20produce%20biodiesel%20and%20pigments&rft.jtitle=Bioprocess%20and%20biosystems%20engineering&rft.au=D%E2%80%99Alessandro,%20Emmanuel%20Bezerra&rft.date=2019-12-01&rft.volume=42&rft.issue=12&rft.spage=2015&rft.epage=2022&rft.pages=2015-2022&rft.issn=1615-7591&rft.eissn=1615-7605&rft_id=info:doi/10.1007/s00449-019-02196-5&rft_dat=%3Cproquest_cross%3E2282739323%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2282739323&rft_id=info:pmid/31471708&rfr_iscdi=true