Rational Engineering of Hydratase from Lactobacillus acidophilus Reveals Critical Residues Directing Substrate Specificity and Regioselectivity

Enzymatic conversion of fatty acids (FAs) by fatty acid hydratases (FAHs) presents a green and efficient route for high‐value hydroxy fatty acid (HFA) production. However, limited diversity was achieved among HFAs, to date, with respect to chain length and hydroxy position. In this study, two highly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chembiochem : a European journal of chemical biology 2020-02, Vol.21 (4), p.550-563
Hauptverfasser: Eser, Bekir Engin, Poborsky, Michal, Dai, Rongrong, Kishino, Shigenobu, Ljubic, Anita, Takeuchi, Michiki, Jacobsen, Charlotte, Ogawa, Jun, Kristensen, Peter, Guo, Zheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 563
container_issue 4
container_start_page 550
container_title Chembiochem : a European journal of chemical biology
container_volume 21
creator Eser, Bekir Engin
Poborsky, Michal
Dai, Rongrong
Kishino, Shigenobu
Ljubic, Anita
Takeuchi, Michiki
Jacobsen, Charlotte
Ogawa, Jun
Kristensen, Peter
Guo, Zheng
description Enzymatic conversion of fatty acids (FAs) by fatty acid hydratases (FAHs) presents a green and efficient route for high‐value hydroxy fatty acid (HFA) production. However, limited diversity was achieved among HFAs, to date, with respect to chain length and hydroxy position. In this study, two highly similar FAHs from Lactobacillus acidophilus were compared: FA‐HY2 has a narrow substrate scope and strict regioselectivity, whereas FA‐HY1 utilizes longer chain substrates and hydrates various double‐bond positions. It is revealed that three active‐site residues play a remarkable role in directing substrate specificity and regioselectivity of hydration. If these residues on FA‐HY2 are mutated to the corresponding ones in FA‐HY1, a significant expansion of substrate scope and a distinct enhancement in hydration of double bonds towards the ω‐end of FAs is observed. A three‐residue mutant of FA‐HY2 (TM‐FA‐HY2) displayed an impressive reversal of regioselectivity towards linoleic acid, shifting the ratio of the HFA regioisomers (10‐OH/13‐OH) from 99:1 to 12:88. Notable changes in regioselectivity were also observed for arachidonic acid and for C18 polyunsaturated fatty acid substrates. In addition, TM‐FA‐HY2 converted eicosapentaenoic acid into its 12‐hydroxy product with high conversion at the preparative scale. Furthermore, it is demonstrated that microalgae are a source of diverse FAs for HFA production. This study paves the way for tailor‐made FAH design to enable the production of diverse HFAs for various applications from the polymer industry to medical fields. Dictated by only a few: Comparative analysis of the active‐site residues of two fatty acid hydratases from L. acidophilus, which have high sequence homology, but distinct substrate specificity and regioselectivity, reveal three critical amino acids that play a remarkable role in directing substrate specificity and regioselectivity of hydration.
doi_str_mv 10.1002/cbic.201900389
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2282453290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2358446944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5169-e73aa969d4941263603f4ee3174cd82f656aad4d4a49d8905832365d46a45bc83</originalsourceid><addsrcrecordid>eNqFkU1r3DAQhkVpaT7aa45B0Esuu9XHWGsdEydpAguFTXs2sjTeKHitjWQn7K_oX67MblPopacZNI8ehnkJOeNszhkTX23j7VwwrhmTpX5HjjlIPVsoKd8fehBicUROUnpijGkl-UdyJDmoIk-Pya-VGXzoTUdv-rXvEaPv1zS09G7nohlMQtrGsKFLY4fQGOu7bkw0Vxe2j37qV_iCpku0in7wNotWmLwbMdFrH9EOk-9hbNKQdUgftmh9660fdtT0LsNrHxJ2E_iSHz-RD2224edDPSU_b29-VHez5fdv99XlcmYLrvQMF9IYrbQDDVwoqZhsAVHyBVhXilYVyhgHDgxoV2pWlFJIVThQBorGlvKUXOy92xie87JDvfHJYteZHsOYaiFKAYUUmmX0yz_oUxhjPlmmZFECKA2QqfmesjGkFLGtt9FvTNzVnNVTVPUUVf0WVf5wftCOzQbdG_4nmwzoPfDqO9z9R1dXV_fVX_lvJm6h7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2358446944</pqid></control><display><type>article</type><title>Rational Engineering of Hydratase from Lactobacillus acidophilus Reveals Critical Residues Directing Substrate Specificity and Regioselectivity</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Eser, Bekir Engin ; Poborsky, Michal ; Dai, Rongrong ; Kishino, Shigenobu ; Ljubic, Anita ; Takeuchi, Michiki ; Jacobsen, Charlotte ; Ogawa, Jun ; Kristensen, Peter ; Guo, Zheng</creator><creatorcontrib>Eser, Bekir Engin ; Poborsky, Michal ; Dai, Rongrong ; Kishino, Shigenobu ; Ljubic, Anita ; Takeuchi, Michiki ; Jacobsen, Charlotte ; Ogawa, Jun ; Kristensen, Peter ; Guo, Zheng</creatorcontrib><description>Enzymatic conversion of fatty acids (FAs) by fatty acid hydratases (FAHs) presents a green and efficient route for high‐value hydroxy fatty acid (HFA) production. However, limited diversity was achieved among HFAs, to date, with respect to chain length and hydroxy position. In this study, two highly similar FAHs from Lactobacillus acidophilus were compared: FA‐HY2 has a narrow substrate scope and strict regioselectivity, whereas FA‐HY1 utilizes longer chain substrates and hydrates various double‐bond positions. It is revealed that three active‐site residues play a remarkable role in directing substrate specificity and regioselectivity of hydration. If these residues on FA‐HY2 are mutated to the corresponding ones in FA‐HY1, a significant expansion of substrate scope and a distinct enhancement in hydration of double bonds towards the ω‐end of FAs is observed. A three‐residue mutant of FA‐HY2 (TM‐FA‐HY2) displayed an impressive reversal of regioselectivity towards linoleic acid, shifting the ratio of the HFA regioisomers (10‐OH/13‐OH) from 99:1 to 12:88. Notable changes in regioselectivity were also observed for arachidonic acid and for C18 polyunsaturated fatty acid substrates. In addition, TM‐FA‐HY2 converted eicosapentaenoic acid into its 12‐hydroxy product with high conversion at the preparative scale. Furthermore, it is demonstrated that microalgae are a source of diverse FAs for HFA production. This study paves the way for tailor‐made FAH design to enable the production of diverse HFAs for various applications from the polymer industry to medical fields. Dictated by only a few: Comparative analysis of the active‐site residues of two fatty acid hydratases from L. acidophilus, which have high sequence homology, but distinct substrate specificity and regioselectivity, reveal three critical amino acids that play a remarkable role in directing substrate specificity and regioselectivity of hydration.</description><identifier>ISSN: 1439-4227</identifier><identifier>EISSN: 1439-7633</identifier><identifier>DOI: 10.1002/cbic.201900389</identifier><identifier>PMID: 31465143</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Arachidonic acid ; Bacterial Proteins - biosynthesis ; Bacterial Proteins - chemistry ; Conversion ; Eicosapentaenoic acid ; enzyme catalysis ; Fatty acids ; Fatty Acids - metabolism ; Hydrates ; Hydration ; Hydrolases - biosynthesis ; Hydrolases - chemistry ; Kinetics ; Lactobacilli ; Lactobacillus acidophilus ; Lactobacillus acidophilus - enzymology ; Linoleic acid ; microalgae ; Mutants ; Polymers ; Polyunsaturated fatty acids ; Protein Engineering ; Regioselectivity ; Residues ; Substrate Specificity ; Substrates</subject><ispartof>Chembiochem : a European journal of chemical biology, 2020-02, Vol.21 (4), p.550-563</ispartof><rights>2019 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2020 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5169-e73aa969d4941263603f4ee3174cd82f656aad4d4a49d8905832365d46a45bc83</citedby><cites>FETCH-LOGICAL-c5169-e73aa969d4941263603f4ee3174cd82f656aad4d4a49d8905832365d46a45bc83</cites><orcidid>0000-0002-8836-1251 ; 0000-0001-7205-6853 ; 0000-0002-4587-2422 ; 0000-0003-3540-9669 ; 0000-0001-9370-8830 ; 0000-0003-4680-6360</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcbic.201900389$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcbic.201900389$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31465143$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eser, Bekir Engin</creatorcontrib><creatorcontrib>Poborsky, Michal</creatorcontrib><creatorcontrib>Dai, Rongrong</creatorcontrib><creatorcontrib>Kishino, Shigenobu</creatorcontrib><creatorcontrib>Ljubic, Anita</creatorcontrib><creatorcontrib>Takeuchi, Michiki</creatorcontrib><creatorcontrib>Jacobsen, Charlotte</creatorcontrib><creatorcontrib>Ogawa, Jun</creatorcontrib><creatorcontrib>Kristensen, Peter</creatorcontrib><creatorcontrib>Guo, Zheng</creatorcontrib><title>Rational Engineering of Hydratase from Lactobacillus acidophilus Reveals Critical Residues Directing Substrate Specificity and Regioselectivity</title><title>Chembiochem : a European journal of chemical biology</title><addtitle>Chembiochem</addtitle><description>Enzymatic conversion of fatty acids (FAs) by fatty acid hydratases (FAHs) presents a green and efficient route for high‐value hydroxy fatty acid (HFA) production. However, limited diversity was achieved among HFAs, to date, with respect to chain length and hydroxy position. In this study, two highly similar FAHs from Lactobacillus acidophilus were compared: FA‐HY2 has a narrow substrate scope and strict regioselectivity, whereas FA‐HY1 utilizes longer chain substrates and hydrates various double‐bond positions. It is revealed that three active‐site residues play a remarkable role in directing substrate specificity and regioselectivity of hydration. If these residues on FA‐HY2 are mutated to the corresponding ones in FA‐HY1, a significant expansion of substrate scope and a distinct enhancement in hydration of double bonds towards the ω‐end of FAs is observed. A three‐residue mutant of FA‐HY2 (TM‐FA‐HY2) displayed an impressive reversal of regioselectivity towards linoleic acid, shifting the ratio of the HFA regioisomers (10‐OH/13‐OH) from 99:1 to 12:88. Notable changes in regioselectivity were also observed for arachidonic acid and for C18 polyunsaturated fatty acid substrates. In addition, TM‐FA‐HY2 converted eicosapentaenoic acid into its 12‐hydroxy product with high conversion at the preparative scale. Furthermore, it is demonstrated that microalgae are a source of diverse FAs for HFA production. This study paves the way for tailor‐made FAH design to enable the production of diverse HFAs for various applications from the polymer industry to medical fields. Dictated by only a few: Comparative analysis of the active‐site residues of two fatty acid hydratases from L. acidophilus, which have high sequence homology, but distinct substrate specificity and regioselectivity, reveal three critical amino acids that play a remarkable role in directing substrate specificity and regioselectivity of hydration.</description><subject>Arachidonic acid</subject><subject>Bacterial Proteins - biosynthesis</subject><subject>Bacterial Proteins - chemistry</subject><subject>Conversion</subject><subject>Eicosapentaenoic acid</subject><subject>enzyme catalysis</subject><subject>Fatty acids</subject><subject>Fatty Acids - metabolism</subject><subject>Hydrates</subject><subject>Hydration</subject><subject>Hydrolases - biosynthesis</subject><subject>Hydrolases - chemistry</subject><subject>Kinetics</subject><subject>Lactobacilli</subject><subject>Lactobacillus acidophilus</subject><subject>Lactobacillus acidophilus - enzymology</subject><subject>Linoleic acid</subject><subject>microalgae</subject><subject>Mutants</subject><subject>Polymers</subject><subject>Polyunsaturated fatty acids</subject><subject>Protein Engineering</subject><subject>Regioselectivity</subject><subject>Residues</subject><subject>Substrate Specificity</subject><subject>Substrates</subject><issn>1439-4227</issn><issn>1439-7633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1r3DAQhkVpaT7aa45B0Esuu9XHWGsdEydpAguFTXs2sjTeKHitjWQn7K_oX67MblPopacZNI8ehnkJOeNszhkTX23j7VwwrhmTpX5HjjlIPVsoKd8fehBicUROUnpijGkl-UdyJDmoIk-Pya-VGXzoTUdv-rXvEaPv1zS09G7nohlMQtrGsKFLY4fQGOu7bkw0Vxe2j37qV_iCpku0in7wNotWmLwbMdFrH9EOk-9hbNKQdUgftmh9660fdtT0LsNrHxJ2E_iSHz-RD2224edDPSU_b29-VHez5fdv99XlcmYLrvQMF9IYrbQDDVwoqZhsAVHyBVhXilYVyhgHDgxoV2pWlFJIVThQBorGlvKUXOy92xie87JDvfHJYteZHsOYaiFKAYUUmmX0yz_oUxhjPlmmZFECKA2QqfmesjGkFLGtt9FvTNzVnNVTVPUUVf0WVf5wftCOzQbdG_4nmwzoPfDqO9z9R1dXV_fVX_lvJm6h7Q</recordid><startdate>20200217</startdate><enddate>20200217</enddate><creator>Eser, Bekir Engin</creator><creator>Poborsky, Michal</creator><creator>Dai, Rongrong</creator><creator>Kishino, Shigenobu</creator><creator>Ljubic, Anita</creator><creator>Takeuchi, Michiki</creator><creator>Jacobsen, Charlotte</creator><creator>Ogawa, Jun</creator><creator>Kristensen, Peter</creator><creator>Guo, Zheng</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8836-1251</orcidid><orcidid>https://orcid.org/0000-0001-7205-6853</orcidid><orcidid>https://orcid.org/0000-0002-4587-2422</orcidid><orcidid>https://orcid.org/0000-0003-3540-9669</orcidid><orcidid>https://orcid.org/0000-0001-9370-8830</orcidid><orcidid>https://orcid.org/0000-0003-4680-6360</orcidid></search><sort><creationdate>20200217</creationdate><title>Rational Engineering of Hydratase from Lactobacillus acidophilus Reveals Critical Residues Directing Substrate Specificity and Regioselectivity</title><author>Eser, Bekir Engin ; Poborsky, Michal ; Dai, Rongrong ; Kishino, Shigenobu ; Ljubic, Anita ; Takeuchi, Michiki ; Jacobsen, Charlotte ; Ogawa, Jun ; Kristensen, Peter ; Guo, Zheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5169-e73aa969d4941263603f4ee3174cd82f656aad4d4a49d8905832365d46a45bc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Arachidonic acid</topic><topic>Bacterial Proteins - biosynthesis</topic><topic>Bacterial Proteins - chemistry</topic><topic>Conversion</topic><topic>Eicosapentaenoic acid</topic><topic>enzyme catalysis</topic><topic>Fatty acids</topic><topic>Fatty Acids - metabolism</topic><topic>Hydrates</topic><topic>Hydration</topic><topic>Hydrolases - biosynthesis</topic><topic>Hydrolases - chemistry</topic><topic>Kinetics</topic><topic>Lactobacilli</topic><topic>Lactobacillus acidophilus</topic><topic>Lactobacillus acidophilus - enzymology</topic><topic>Linoleic acid</topic><topic>microalgae</topic><topic>Mutants</topic><topic>Polymers</topic><topic>Polyunsaturated fatty acids</topic><topic>Protein Engineering</topic><topic>Regioselectivity</topic><topic>Residues</topic><topic>Substrate Specificity</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eser, Bekir Engin</creatorcontrib><creatorcontrib>Poborsky, Michal</creatorcontrib><creatorcontrib>Dai, Rongrong</creatorcontrib><creatorcontrib>Kishino, Shigenobu</creatorcontrib><creatorcontrib>Ljubic, Anita</creatorcontrib><creatorcontrib>Takeuchi, Michiki</creatorcontrib><creatorcontrib>Jacobsen, Charlotte</creatorcontrib><creatorcontrib>Ogawa, Jun</creatorcontrib><creatorcontrib>Kristensen, Peter</creatorcontrib><creatorcontrib>Guo, Zheng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Chembiochem : a European journal of chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eser, Bekir Engin</au><au>Poborsky, Michal</au><au>Dai, Rongrong</au><au>Kishino, Shigenobu</au><au>Ljubic, Anita</au><au>Takeuchi, Michiki</au><au>Jacobsen, Charlotte</au><au>Ogawa, Jun</au><au>Kristensen, Peter</au><au>Guo, Zheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rational Engineering of Hydratase from Lactobacillus acidophilus Reveals Critical Residues Directing Substrate Specificity and Regioselectivity</atitle><jtitle>Chembiochem : a European journal of chemical biology</jtitle><addtitle>Chembiochem</addtitle><date>2020-02-17</date><risdate>2020</risdate><volume>21</volume><issue>4</issue><spage>550</spage><epage>563</epage><pages>550-563</pages><issn>1439-4227</issn><eissn>1439-7633</eissn><abstract>Enzymatic conversion of fatty acids (FAs) by fatty acid hydratases (FAHs) presents a green and efficient route for high‐value hydroxy fatty acid (HFA) production. However, limited diversity was achieved among HFAs, to date, with respect to chain length and hydroxy position. In this study, two highly similar FAHs from Lactobacillus acidophilus were compared: FA‐HY2 has a narrow substrate scope and strict regioselectivity, whereas FA‐HY1 utilizes longer chain substrates and hydrates various double‐bond positions. It is revealed that three active‐site residues play a remarkable role in directing substrate specificity and regioselectivity of hydration. If these residues on FA‐HY2 are mutated to the corresponding ones in FA‐HY1, a significant expansion of substrate scope and a distinct enhancement in hydration of double bonds towards the ω‐end of FAs is observed. A three‐residue mutant of FA‐HY2 (TM‐FA‐HY2) displayed an impressive reversal of regioselectivity towards linoleic acid, shifting the ratio of the HFA regioisomers (10‐OH/13‐OH) from 99:1 to 12:88. Notable changes in regioselectivity were also observed for arachidonic acid and for C18 polyunsaturated fatty acid substrates. In addition, TM‐FA‐HY2 converted eicosapentaenoic acid into its 12‐hydroxy product with high conversion at the preparative scale. Furthermore, it is demonstrated that microalgae are a source of diverse FAs for HFA production. This study paves the way for tailor‐made FAH design to enable the production of diverse HFAs for various applications from the polymer industry to medical fields. Dictated by only a few: Comparative analysis of the active‐site residues of two fatty acid hydratases from L. acidophilus, which have high sequence homology, but distinct substrate specificity and regioselectivity, reveal three critical amino acids that play a remarkable role in directing substrate specificity and regioselectivity of hydration.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31465143</pmid><doi>10.1002/cbic.201900389</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8836-1251</orcidid><orcidid>https://orcid.org/0000-0001-7205-6853</orcidid><orcidid>https://orcid.org/0000-0002-4587-2422</orcidid><orcidid>https://orcid.org/0000-0003-3540-9669</orcidid><orcidid>https://orcid.org/0000-0001-9370-8830</orcidid><orcidid>https://orcid.org/0000-0003-4680-6360</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1439-4227
ispartof Chembiochem : a European journal of chemical biology, 2020-02, Vol.21 (4), p.550-563
issn 1439-4227
1439-7633
language eng
recordid cdi_proquest_miscellaneous_2282453290
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Arachidonic acid
Bacterial Proteins - biosynthesis
Bacterial Proteins - chemistry
Conversion
Eicosapentaenoic acid
enzyme catalysis
Fatty acids
Fatty Acids - metabolism
Hydrates
Hydration
Hydrolases - biosynthesis
Hydrolases - chemistry
Kinetics
Lactobacilli
Lactobacillus acidophilus
Lactobacillus acidophilus - enzymology
Linoleic acid
microalgae
Mutants
Polymers
Polyunsaturated fatty acids
Protein Engineering
Regioselectivity
Residues
Substrate Specificity
Substrates
title Rational Engineering of Hydratase from Lactobacillus acidophilus Reveals Critical Residues Directing Substrate Specificity and Regioselectivity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T19%3A10%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rational%20Engineering%20of%20Hydratase%20from%20Lactobacillus%20acidophilus%20Reveals%20Critical%20Residues%20Directing%20Substrate%20Specificity%20and%20Regioselectivity&rft.jtitle=Chembiochem%20:%20a%20European%20journal%20of%20chemical%20biology&rft.au=Eser,%20Bekir%20Engin&rft.date=2020-02-17&rft.volume=21&rft.issue=4&rft.spage=550&rft.epage=563&rft.pages=550-563&rft.issn=1439-4227&rft.eissn=1439-7633&rft_id=info:doi/10.1002/cbic.201900389&rft_dat=%3Cproquest_cross%3E2358446944%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2358446944&rft_id=info:pmid/31465143&rfr_iscdi=true