Composition Engineering Boosts Voltage Windows for Advanced Sodium-Ion Batteries

Transition-metal selenides have captured sustainable research attention in energy storage and conversion field as promising anodes for sodium-ion batteries. However, for the majority of transition metal selenides, the potential windows have to compress to 0.5–3.0 V for the maintenance of cycling and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2019-09, Vol.13 (9), p.10787-10797
Hauptverfasser: Jiang, Yunling, Zou, Guoqiang, Hou, Hongshuai, Li, Jiayang, Liu, Cheng, Qiu, Xiaoqing, Ji, Xiaobo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10797
container_issue 9
container_start_page 10787
container_title ACS nano
container_volume 13
creator Jiang, Yunling
Zou, Guoqiang
Hou, Hongshuai
Li, Jiayang
Liu, Cheng
Qiu, Xiaoqing
Ji, Xiaobo
description Transition-metal selenides have captured sustainable research attention in energy storage and conversion field as promising anodes for sodium-ion batteries. However, for the majority of transition metal selenides, the potential windows have to compress to 0.5–3.0 V for the maintenance of cycling and rate capability, which largely sacrifices the capacity under low voltage and impair energy density for sodium full batteries. Herein, through introducing diverse metal ions, transition-metal selenides consisted of different composition doping (CoM–Se2@NC, M = Ni, Cu, Zn) are prepared with more stable structures and higher conductivity, which exhibit superior cycling and rate properties than those of CoSe2@NC even at a wider voltage range for sodium ion batteries. In particular, Zn2+ doping demonstrates the most prominent sodium storage performance among series materials, delivering a high capacity of 474 mAh g–1 after 80 cycles at 500 mA g–1 and rate capacities of 511.4, 382.7, 372.1, 339.2, 306.8, and 291.4 mAh g–1 at current densities of 0.1, 0.5, 1.0, 1.4, 1.8, and 2.0 A g–1, respectively. The composition adjusting strategy based on metal ions doping can optimize electrochemical performances of metal selenides, offer an avenue to expand stable voltage windows, and provide a feasible approach for the construction of high specific energy sodium-ion batteries.
doi_str_mv 10.1021/acsnano.9b05614
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2281103264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2281103264</sourcerecordid><originalsourceid>FETCH-LOGICAL-a333t-1fc3df1384415c837c0665c881ddbad0c65c2f268451f5899936c8c8fcd2a35f3</originalsourceid><addsrcrecordid>eNp1kMtLAzEYxIMotlbP3mSPgmybx26aHttStVBQ8HkLaR4lZTepya7if2-ka2-evvngNwMzAFwiOEQQo5GQ0Qnnh5M1LCkqjkAfTQjNIaPvxwddoh44i3ELYTlmY3oKegQVBYaY9MHj3Nc7H21jvcsWbmOd1sG6TTbzPjYxe_VVIzY6e7NO-a-YGR-yqfoUTmqVPXll2zpfJutMNE0y6ngOToyoor7o7gC83C6e5_f56uFuOZ-uckEIaXJkJFEGEVYUqJSMjCWkNAmGlFoLBWV6sMGUFSUyJZtMUhXJJDNSYUFKQwbgep-7C_6j1bHhtY1SV5Vw2reRY8wQggTTIqGjPSqDjzFow3fB1iJ8cwT574y8m5F3MybHVRfermutDvzfbgm42QPJybe-DS51_TfuB552ff8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2281103264</pqid></control><display><type>article</type><title>Composition Engineering Boosts Voltage Windows for Advanced Sodium-Ion Batteries</title><source>ACS Publications</source><creator>Jiang, Yunling ; Zou, Guoqiang ; Hou, Hongshuai ; Li, Jiayang ; Liu, Cheng ; Qiu, Xiaoqing ; Ji, Xiaobo</creator><creatorcontrib>Jiang, Yunling ; Zou, Guoqiang ; Hou, Hongshuai ; Li, Jiayang ; Liu, Cheng ; Qiu, Xiaoqing ; Ji, Xiaobo</creatorcontrib><description>Transition-metal selenides have captured sustainable research attention in energy storage and conversion field as promising anodes for sodium-ion batteries. However, for the majority of transition metal selenides, the potential windows have to compress to 0.5–3.0 V for the maintenance of cycling and rate capability, which largely sacrifices the capacity under low voltage and impair energy density for sodium full batteries. Herein, through introducing diverse metal ions, transition-metal selenides consisted of different composition doping (CoM–Se2@NC, M = Ni, Cu, Zn) are prepared with more stable structures and higher conductivity, which exhibit superior cycling and rate properties than those of CoSe2@NC even at a wider voltage range for sodium ion batteries. In particular, Zn2+ doping demonstrates the most prominent sodium storage performance among series materials, delivering a high capacity of 474 mAh g–1 after 80 cycles at 500 mA g–1 and rate capacities of 511.4, 382.7, 372.1, 339.2, 306.8, and 291.4 mAh g–1 at current densities of 0.1, 0.5, 1.0, 1.4, 1.8, and 2.0 A g–1, respectively. The composition adjusting strategy based on metal ions doping can optimize electrochemical performances of metal selenides, offer an avenue to expand stable voltage windows, and provide a feasible approach for the construction of high specific energy sodium-ion batteries.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.9b05614</identifier><identifier>PMID: 31442023</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2019-09, Vol.13 (9), p.10787-10797</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a333t-1fc3df1384415c837c0665c881ddbad0c65c2f268451f5899936c8c8fcd2a35f3</citedby><cites>FETCH-LOGICAL-a333t-1fc3df1384415c837c0665c881ddbad0c65c2f268451f5899936c8c8fcd2a35f3</cites><orcidid>0000-0001-8201-4614 ; 0000-0002-5405-7913</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.9b05614$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.9b05614$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31442023$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Yunling</creatorcontrib><creatorcontrib>Zou, Guoqiang</creatorcontrib><creatorcontrib>Hou, Hongshuai</creatorcontrib><creatorcontrib>Li, Jiayang</creatorcontrib><creatorcontrib>Liu, Cheng</creatorcontrib><creatorcontrib>Qiu, Xiaoqing</creatorcontrib><creatorcontrib>Ji, Xiaobo</creatorcontrib><title>Composition Engineering Boosts Voltage Windows for Advanced Sodium-Ion Batteries</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Transition-metal selenides have captured sustainable research attention in energy storage and conversion field as promising anodes for sodium-ion batteries. However, for the majority of transition metal selenides, the potential windows have to compress to 0.5–3.0 V for the maintenance of cycling and rate capability, which largely sacrifices the capacity under low voltage and impair energy density for sodium full batteries. Herein, through introducing diverse metal ions, transition-metal selenides consisted of different composition doping (CoM–Se2@NC, M = Ni, Cu, Zn) are prepared with more stable structures and higher conductivity, which exhibit superior cycling and rate properties than those of CoSe2@NC even at a wider voltage range for sodium ion batteries. In particular, Zn2+ doping demonstrates the most prominent sodium storage performance among series materials, delivering a high capacity of 474 mAh g–1 after 80 cycles at 500 mA g–1 and rate capacities of 511.4, 382.7, 372.1, 339.2, 306.8, and 291.4 mAh g–1 at current densities of 0.1, 0.5, 1.0, 1.4, 1.8, and 2.0 A g–1, respectively. The composition adjusting strategy based on metal ions doping can optimize electrochemical performances of metal selenides, offer an avenue to expand stable voltage windows, and provide a feasible approach for the construction of high specific energy sodium-ion batteries.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMtLAzEYxIMotlbP3mSPgmybx26aHttStVBQ8HkLaR4lZTepya7if2-ka2-evvngNwMzAFwiOEQQo5GQ0Qnnh5M1LCkqjkAfTQjNIaPvxwddoh44i3ELYTlmY3oKegQVBYaY9MHj3Nc7H21jvcsWbmOd1sG6TTbzPjYxe_VVIzY6e7NO-a-YGR-yqfoUTmqVPXll2zpfJutMNE0y6ngOToyoor7o7gC83C6e5_f56uFuOZ-uckEIaXJkJFEGEVYUqJSMjCWkNAmGlFoLBWV6sMGUFSUyJZtMUhXJJDNSYUFKQwbgep-7C_6j1bHhtY1SV5Vw2reRY8wQggTTIqGjPSqDjzFow3fB1iJ8cwT574y8m5F3MybHVRfermutDvzfbgm42QPJybe-DS51_TfuB552ff8</recordid><startdate>20190924</startdate><enddate>20190924</enddate><creator>Jiang, Yunling</creator><creator>Zou, Guoqiang</creator><creator>Hou, Hongshuai</creator><creator>Li, Jiayang</creator><creator>Liu, Cheng</creator><creator>Qiu, Xiaoqing</creator><creator>Ji, Xiaobo</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8201-4614</orcidid><orcidid>https://orcid.org/0000-0002-5405-7913</orcidid></search><sort><creationdate>20190924</creationdate><title>Composition Engineering Boosts Voltage Windows for Advanced Sodium-Ion Batteries</title><author>Jiang, Yunling ; Zou, Guoqiang ; Hou, Hongshuai ; Li, Jiayang ; Liu, Cheng ; Qiu, Xiaoqing ; Ji, Xiaobo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a333t-1fc3df1384415c837c0665c881ddbad0c65c2f268451f5899936c8c8fcd2a35f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Yunling</creatorcontrib><creatorcontrib>Zou, Guoqiang</creatorcontrib><creatorcontrib>Hou, Hongshuai</creatorcontrib><creatorcontrib>Li, Jiayang</creatorcontrib><creatorcontrib>Liu, Cheng</creatorcontrib><creatorcontrib>Qiu, Xiaoqing</creatorcontrib><creatorcontrib>Ji, Xiaobo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Yunling</au><au>Zou, Guoqiang</au><au>Hou, Hongshuai</au><au>Li, Jiayang</au><au>Liu, Cheng</au><au>Qiu, Xiaoqing</au><au>Ji, Xiaobo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Composition Engineering Boosts Voltage Windows for Advanced Sodium-Ion Batteries</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2019-09-24</date><risdate>2019</risdate><volume>13</volume><issue>9</issue><spage>10787</spage><epage>10797</epage><pages>10787-10797</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Transition-metal selenides have captured sustainable research attention in energy storage and conversion field as promising anodes for sodium-ion batteries. However, for the majority of transition metal selenides, the potential windows have to compress to 0.5–3.0 V for the maintenance of cycling and rate capability, which largely sacrifices the capacity under low voltage and impair energy density for sodium full batteries. Herein, through introducing diverse metal ions, transition-metal selenides consisted of different composition doping (CoM–Se2@NC, M = Ni, Cu, Zn) are prepared with more stable structures and higher conductivity, which exhibit superior cycling and rate properties than those of CoSe2@NC even at a wider voltage range for sodium ion batteries. In particular, Zn2+ doping demonstrates the most prominent sodium storage performance among series materials, delivering a high capacity of 474 mAh g–1 after 80 cycles at 500 mA g–1 and rate capacities of 511.4, 382.7, 372.1, 339.2, 306.8, and 291.4 mAh g–1 at current densities of 0.1, 0.5, 1.0, 1.4, 1.8, and 2.0 A g–1, respectively. The composition adjusting strategy based on metal ions doping can optimize electrochemical performances of metal selenides, offer an avenue to expand stable voltage windows, and provide a feasible approach for the construction of high specific energy sodium-ion batteries.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31442023</pmid><doi>10.1021/acsnano.9b05614</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8201-4614</orcidid><orcidid>https://orcid.org/0000-0002-5405-7913</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2019-09, Vol.13 (9), p.10787-10797
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_2281103264
source ACS Publications
title Composition Engineering Boosts Voltage Windows for Advanced Sodium-Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A10%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Composition%20Engineering%20Boosts%20Voltage%20Windows%20for%20Advanced%20Sodium-Ion%20Batteries&rft.jtitle=ACS%20nano&rft.au=Jiang,%20Yunling&rft.date=2019-09-24&rft.volume=13&rft.issue=9&rft.spage=10787&rft.epage=10797&rft.pages=10787-10797&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.9b05614&rft_dat=%3Cproquest_cross%3E2281103264%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2281103264&rft_id=info:pmid/31442023&rfr_iscdi=true