Nernst–Planck analysis of reverse-electrodialysis with the thin-composite pore-filling membranes and its upscaling potential

To properly design reverse electrodialysis (RED) stacks, modeling of ion transport and prediction of power generation on the single RED stack are very important. Currently, the Nernst–Planck equation is widely adopted to simulate ion transport through IEMs. However, applying typical Nernst-Planck eq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water research (Oxford) 2019-11, Vol.165, p.114970-114970, Article 114970
Hauptverfasser: Kim, Hanki, Jeong, Namjo, Yang, SeungCheol, Choi, Jiyeon, Lee, Mi-Soon, Nam, Joo-Youn, Jwa, Eunjin, Kim, Byungki, Ryu, Kyung-sang, Choi, Young-Woo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 114970
container_issue
container_start_page 114970
container_title Water research (Oxford)
container_volume 165
creator Kim, Hanki
Jeong, Namjo
Yang, SeungCheol
Choi, Jiyeon
Lee, Mi-Soon
Nam, Joo-Youn
Jwa, Eunjin
Kim, Byungki
Ryu, Kyung-sang
Choi, Young-Woo
description To properly design reverse electrodialysis (RED) stacks, modeling of ion transport and prediction of power generation on the single RED stack are very important. Currently, the Nernst–Planck equation is widely adopted to simulate ion transport through IEMs. However, applying typical Nernst-Planck equation is not proper to analyze ion transport through the heterogeneous thin-composite pore-filling membrane because of the non-conductive site in the membrane matrix. Herein, we firstly introduced modified Nernst-Planck equation by addressing conductive traveling length (CTL) to simulate the ion transport through the thin-composite pore-filling membranes and the performance of a single RED stack with the same membranes. Also, 100 cell-pairs of RED stacks were assembled to validate modified Nernst-Planck equation according to the flow rate and membrane types. Under the OCV condition, the conductivity of the effluents was measured to validate the modified Nernst-Planck equation, and differences between modeling and experiments were less than 1.5 mS/cm. Theoretical OCV and current density were estimated by using modified Nernst-Planck equation. In particular, hydrophobicity on the surface of the heterogeneous membrane was considered to describe ion transport through the pore-filling membranes. Moreover, power generation from RED stacks was calculated according to the flow rate and the number of cell pairs. [Display omitted] •Studied newly developed thin-film ion exchange membrane for reverse electrodialysis.•Modified Nernst-Planck equation accounts for conductive traveling length.•Employed experiments and simulations to validate the adapted model.•Considered hydrophobicity of membrane surface to describe electrical current.
doi_str_mv 10.1016/j.watres.2019.114970
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2280565010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0043135419307444</els_id><sourcerecordid>2280565010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-cec6fdde0ecd8619cf973fd98ac7444e2e1b36c6d3930bf2e4adac5dc1d8382d3</originalsourceid><addsrcrecordid>eNp9kE1OHDEQha0oKAwkN4hQL7Ppif-mfzZIESIJEoIsYG15ytXBQ3e7cXlAbFDuwA1zkpj0hGUWpVq8V--pPsY-Cr4UXFSfN8sHmyLSUnLRLoXQbc3fsIVo6raUWjdv2YJzrUqhVnqfHRBtOOdSqvYd21dCy4rzesGeLjCOlH7_ev7R2xFuCzva_pE8FaErIt5jJCyxR0gxOL-THny6KdIN5vFjCWGYAvmExRQilp3vez_-LAYc1tGOSDnSFT5RsZ0I7F9tCgnHlOPes73O9oQfdvuQXX89vTr5Xp5ffjs7-XJegqpkKgGh6pxDjuCaSrTQtbXqXNtYqLXWKFGsVQWVU63i606its7CyoFwjWqkU4fs05w7xXC3RUpm8ATY558xbMlI2fBVteKCZ6uerRADUcTOTNEPNj4awc0LebMxM3nzQt7M5PPZ0a5hux7QvR79Q50Nx7MB85_3HqMh8DgCOh8zXuOC_3_DHzJbnCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2280565010</pqid></control><display><type>article</type><title>Nernst–Planck analysis of reverse-electrodialysis with the thin-composite pore-filling membranes and its upscaling potential</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Kim, Hanki ; Jeong, Namjo ; Yang, SeungCheol ; Choi, Jiyeon ; Lee, Mi-Soon ; Nam, Joo-Youn ; Jwa, Eunjin ; Kim, Byungki ; Ryu, Kyung-sang ; Choi, Young-Woo</creator><creatorcontrib>Kim, Hanki ; Jeong, Namjo ; Yang, SeungCheol ; Choi, Jiyeon ; Lee, Mi-Soon ; Nam, Joo-Youn ; Jwa, Eunjin ; Kim, Byungki ; Ryu, Kyung-sang ; Choi, Young-Woo</creatorcontrib><description>To properly design reverse electrodialysis (RED) stacks, modeling of ion transport and prediction of power generation on the single RED stack are very important. Currently, the Nernst–Planck equation is widely adopted to simulate ion transport through IEMs. However, applying typical Nernst-Planck equation is not proper to analyze ion transport through the heterogeneous thin-composite pore-filling membrane because of the non-conductive site in the membrane matrix. Herein, we firstly introduced modified Nernst-Planck equation by addressing conductive traveling length (CTL) to simulate the ion transport through the thin-composite pore-filling membranes and the performance of a single RED stack with the same membranes. Also, 100 cell-pairs of RED stacks were assembled to validate modified Nernst-Planck equation according to the flow rate and membrane types. Under the OCV condition, the conductivity of the effluents was measured to validate the modified Nernst-Planck equation, and differences between modeling and experiments were less than 1.5 mS/cm. Theoretical OCV and current density were estimated by using modified Nernst-Planck equation. In particular, hydrophobicity on the surface of the heterogeneous membrane was considered to describe ion transport through the pore-filling membranes. Moreover, power generation from RED stacks was calculated according to the flow rate and the number of cell pairs. [Display omitted] •Studied newly developed thin-film ion exchange membrane for reverse electrodialysis.•Modified Nernst-Planck equation accounts for conductive traveling length.•Employed experiments and simulations to validate the adapted model.•Considered hydrophobicity of membrane surface to describe electrical current.</description><identifier>ISSN: 0043-1354</identifier><identifier>EISSN: 1879-2448</identifier><identifier>DOI: 10.1016/j.watres.2019.114970</identifier><identifier>PMID: 31426007</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Bioelectric Energy Sources ; Electric Conductivity ; Ion transport ; Membranes, Artificial ; Modeling ; Nernst–Planck equation ; Pore-filling membrane ; Reverse electrodialysis</subject><ispartof>Water research (Oxford), 2019-11, Vol.165, p.114970-114970, Article 114970</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright © 2019 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-cec6fdde0ecd8619cf973fd98ac7444e2e1b36c6d3930bf2e4adac5dc1d8382d3</citedby><cites>FETCH-LOGICAL-c362t-cec6fdde0ecd8619cf973fd98ac7444e2e1b36c6d3930bf2e4adac5dc1d8382d3</cites><orcidid>0000-0002-0295-644X ; 0000-0002-0184-7356</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0043135419307444$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31426007$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Hanki</creatorcontrib><creatorcontrib>Jeong, Namjo</creatorcontrib><creatorcontrib>Yang, SeungCheol</creatorcontrib><creatorcontrib>Choi, Jiyeon</creatorcontrib><creatorcontrib>Lee, Mi-Soon</creatorcontrib><creatorcontrib>Nam, Joo-Youn</creatorcontrib><creatorcontrib>Jwa, Eunjin</creatorcontrib><creatorcontrib>Kim, Byungki</creatorcontrib><creatorcontrib>Ryu, Kyung-sang</creatorcontrib><creatorcontrib>Choi, Young-Woo</creatorcontrib><title>Nernst–Planck analysis of reverse-electrodialysis with the thin-composite pore-filling membranes and its upscaling potential</title><title>Water research (Oxford)</title><addtitle>Water Res</addtitle><description>To properly design reverse electrodialysis (RED) stacks, modeling of ion transport and prediction of power generation on the single RED stack are very important. Currently, the Nernst–Planck equation is widely adopted to simulate ion transport through IEMs. However, applying typical Nernst-Planck equation is not proper to analyze ion transport through the heterogeneous thin-composite pore-filling membrane because of the non-conductive site in the membrane matrix. Herein, we firstly introduced modified Nernst-Planck equation by addressing conductive traveling length (CTL) to simulate the ion transport through the thin-composite pore-filling membranes and the performance of a single RED stack with the same membranes. Also, 100 cell-pairs of RED stacks were assembled to validate modified Nernst-Planck equation according to the flow rate and membrane types. Under the OCV condition, the conductivity of the effluents was measured to validate the modified Nernst-Planck equation, and differences between modeling and experiments were less than 1.5 mS/cm. Theoretical OCV and current density were estimated by using modified Nernst-Planck equation. In particular, hydrophobicity on the surface of the heterogeneous membrane was considered to describe ion transport through the pore-filling membranes. Moreover, power generation from RED stacks was calculated according to the flow rate and the number of cell pairs. [Display omitted] •Studied newly developed thin-film ion exchange membrane for reverse electrodialysis.•Modified Nernst-Planck equation accounts for conductive traveling length.•Employed experiments and simulations to validate the adapted model.•Considered hydrophobicity of membrane surface to describe electrical current.</description><subject>Bioelectric Energy Sources</subject><subject>Electric Conductivity</subject><subject>Ion transport</subject><subject>Membranes, Artificial</subject><subject>Modeling</subject><subject>Nernst–Planck equation</subject><subject>Pore-filling membrane</subject><subject>Reverse electrodialysis</subject><issn>0043-1354</issn><issn>1879-2448</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1OHDEQha0oKAwkN4hQL7Ppif-mfzZIESIJEoIsYG15ytXBQ3e7cXlAbFDuwA1zkpj0hGUWpVq8V--pPsY-Cr4UXFSfN8sHmyLSUnLRLoXQbc3fsIVo6raUWjdv2YJzrUqhVnqfHRBtOOdSqvYd21dCy4rzesGeLjCOlH7_ev7R2xFuCzva_pE8FaErIt5jJCyxR0gxOL-THny6KdIN5vFjCWGYAvmExRQilp3vez_-LAYc1tGOSDnSFT5RsZ0I7F9tCgnHlOPes73O9oQfdvuQXX89vTr5Xp5ffjs7-XJegqpkKgGh6pxDjuCaSrTQtbXqXNtYqLXWKFGsVQWVU63i606its7CyoFwjWqkU4fs05w7xXC3RUpm8ATY558xbMlI2fBVteKCZ6uerRADUcTOTNEPNj4awc0LebMxM3nzQt7M5PPZ0a5hux7QvR79Q50Nx7MB85_3HqMh8DgCOh8zXuOC_3_DHzJbnCQ</recordid><startdate>20191115</startdate><enddate>20191115</enddate><creator>Kim, Hanki</creator><creator>Jeong, Namjo</creator><creator>Yang, SeungCheol</creator><creator>Choi, Jiyeon</creator><creator>Lee, Mi-Soon</creator><creator>Nam, Joo-Youn</creator><creator>Jwa, Eunjin</creator><creator>Kim, Byungki</creator><creator>Ryu, Kyung-sang</creator><creator>Choi, Young-Woo</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0295-644X</orcidid><orcidid>https://orcid.org/0000-0002-0184-7356</orcidid></search><sort><creationdate>20191115</creationdate><title>Nernst–Planck analysis of reverse-electrodialysis with the thin-composite pore-filling membranes and its upscaling potential</title><author>Kim, Hanki ; Jeong, Namjo ; Yang, SeungCheol ; Choi, Jiyeon ; Lee, Mi-Soon ; Nam, Joo-Youn ; Jwa, Eunjin ; Kim, Byungki ; Ryu, Kyung-sang ; Choi, Young-Woo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-cec6fdde0ecd8619cf973fd98ac7444e2e1b36c6d3930bf2e4adac5dc1d8382d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bioelectric Energy Sources</topic><topic>Electric Conductivity</topic><topic>Ion transport</topic><topic>Membranes, Artificial</topic><topic>Modeling</topic><topic>Nernst–Planck equation</topic><topic>Pore-filling membrane</topic><topic>Reverse electrodialysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Hanki</creatorcontrib><creatorcontrib>Jeong, Namjo</creatorcontrib><creatorcontrib>Yang, SeungCheol</creatorcontrib><creatorcontrib>Choi, Jiyeon</creatorcontrib><creatorcontrib>Lee, Mi-Soon</creatorcontrib><creatorcontrib>Nam, Joo-Youn</creatorcontrib><creatorcontrib>Jwa, Eunjin</creatorcontrib><creatorcontrib>Kim, Byungki</creatorcontrib><creatorcontrib>Ryu, Kyung-sang</creatorcontrib><creatorcontrib>Choi, Young-Woo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Water research (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Hanki</au><au>Jeong, Namjo</au><au>Yang, SeungCheol</au><au>Choi, Jiyeon</au><au>Lee, Mi-Soon</au><au>Nam, Joo-Youn</au><au>Jwa, Eunjin</au><au>Kim, Byungki</au><au>Ryu, Kyung-sang</au><au>Choi, Young-Woo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nernst–Planck analysis of reverse-electrodialysis with the thin-composite pore-filling membranes and its upscaling potential</atitle><jtitle>Water research (Oxford)</jtitle><addtitle>Water Res</addtitle><date>2019-11-15</date><risdate>2019</risdate><volume>165</volume><spage>114970</spage><epage>114970</epage><pages>114970-114970</pages><artnum>114970</artnum><issn>0043-1354</issn><eissn>1879-2448</eissn><abstract>To properly design reverse electrodialysis (RED) stacks, modeling of ion transport and prediction of power generation on the single RED stack are very important. Currently, the Nernst–Planck equation is widely adopted to simulate ion transport through IEMs. However, applying typical Nernst-Planck equation is not proper to analyze ion transport through the heterogeneous thin-composite pore-filling membrane because of the non-conductive site in the membrane matrix. Herein, we firstly introduced modified Nernst-Planck equation by addressing conductive traveling length (CTL) to simulate the ion transport through the thin-composite pore-filling membranes and the performance of a single RED stack with the same membranes. Also, 100 cell-pairs of RED stacks were assembled to validate modified Nernst-Planck equation according to the flow rate and membrane types. Under the OCV condition, the conductivity of the effluents was measured to validate the modified Nernst-Planck equation, and differences between modeling and experiments were less than 1.5 mS/cm. Theoretical OCV and current density were estimated by using modified Nernst-Planck equation. In particular, hydrophobicity on the surface of the heterogeneous membrane was considered to describe ion transport through the pore-filling membranes. Moreover, power generation from RED stacks was calculated according to the flow rate and the number of cell pairs. [Display omitted] •Studied newly developed thin-film ion exchange membrane for reverse electrodialysis.•Modified Nernst-Planck equation accounts for conductive traveling length.•Employed experiments and simulations to validate the adapted model.•Considered hydrophobicity of membrane surface to describe electrical current.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>31426007</pmid><doi>10.1016/j.watres.2019.114970</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0295-644X</orcidid><orcidid>https://orcid.org/0000-0002-0184-7356</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0043-1354
ispartof Water research (Oxford), 2019-11, Vol.165, p.114970-114970, Article 114970
issn 0043-1354
1879-2448
language eng
recordid cdi_proquest_miscellaneous_2280565010
source MEDLINE; Elsevier ScienceDirect Journals
subjects Bioelectric Energy Sources
Electric Conductivity
Ion transport
Membranes, Artificial
Modeling
Nernst–Planck equation
Pore-filling membrane
Reverse electrodialysis
title Nernst–Planck analysis of reverse-electrodialysis with the thin-composite pore-filling membranes and its upscaling potential
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A15%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nernst%E2%80%93Planck%20analysis%20of%20reverse-electrodialysis%20with%20the%20thin-composite%20pore-filling%20membranes%20and%20its%20upscaling%20potential&rft.jtitle=Water%20research%20(Oxford)&rft.au=Kim,%20Hanki&rft.date=2019-11-15&rft.volume=165&rft.spage=114970&rft.epage=114970&rft.pages=114970-114970&rft.artnum=114970&rft.issn=0043-1354&rft.eissn=1879-2448&rft_id=info:doi/10.1016/j.watres.2019.114970&rft_dat=%3Cproquest_cross%3E2280565010%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2280565010&rft_id=info:pmid/31426007&rft_els_id=S0043135419307444&rfr_iscdi=true