Catalytic thermal degradation of Chlorella vulgaris: Evolving deep neural networks for optimization

[Display omitted] •Thermal behavior of C. vulgaris were analyzed.•Effects of the presence of limestone and HZSM-5 zeolite catalysts were investigated.•Novel PDSE neuro-evolution algorithm was proposed for neural architecture search.•Neuro-evolution achieved RMSE of 0.005–0.007, considered state-of-a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioresource technology 2019-11, Vol.292, p.121971-121971, Article 121971
Hauptverfasser: Teng, Sin Yong, Loy, Adrian Chun Minh, Leong, Wei Dong, How, Bing Shen, Chin, Bridgid Lai Fui, Máša, Vítězslav
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 121971
container_issue
container_start_page 121971
container_title Bioresource technology
container_volume 292
creator Teng, Sin Yong
Loy, Adrian Chun Minh
Leong, Wei Dong
How, Bing Shen
Chin, Bridgid Lai Fui
Máša, Vítězslav
description [Display omitted] •Thermal behavior of C. vulgaris were analyzed.•Effects of the presence of limestone and HZSM-5 zeolite catalysts were investigated.•Novel PDSE neuro-evolution algorithm was proposed for neural architecture search.•Neuro-evolution achieved RMSE of 0.005–0.007, considered state-of-art for TGA studies.•Simulated Annealing was used in optimization of operating conditions of the pyrolysis. The aim of this study is to identify the optimum thermal conversion of Chlorella vulgaris with neuro-evolutionary approach. A Progressive Depth Swarm-Evolution (PDSE) neuro-evolutionary approach is proposed to model the Thermogravimetric analysis (TGA) data of catalytic thermal degradation of Chlorella vulgaris. Results showed that the proposed method can generate predictions which are more accurate compared to other conventional approaches (>90% lower in Root Mean Square Error (RMSE) and Mean Bias Error (MBE)). In addition, Simulated Annealing is proposed to determine the optimal operating conditions for microalgae conversion from multiple trained ANN. The predicted optimum conditions were reaction temperature of 900.0 °C, heating rate of 5.0 °C/min with the presence of HZSM-5 zeolite catalyst to obtain 88.3% of Chlorella vulgaris conversion.
doi_str_mv 10.1016/j.biortech.2019.121971
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2280553903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960852419312015</els_id><sourcerecordid>2280553903</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-8448f05237e77cafe50221dfba0dd0c58988fe597ec862efaa94f3cba19ec2413</originalsourceid><addsrcrecordid>eNqFkMlOwzAQhi0EgrK8QuUjlxQvWWxOoKosEhIXOFuuM25dkrjYThE8PSktXDmNNPr-WT6ExpRMKKHl1Woydz4kMMsJI1ROKKOyogdoREXFMyar8hCNiCxJJgqWn6DTGFeEEE4rdoxOOM3zoU1GyEx10s1ncganJYRWN7iGRdC1Ts532Fs8XTY-QNNovOmbhQ4uXuPZxjcb1y0GFta4gz4MuQ7Shw9vEVsfsF8n17qvnynn6MjqJsLFvp6h17vZy_Qhe3q-f5zePmUmL3jKRJ4LSwrGK6gqoy0UhDFa27kmdU1MIaQQQ1NWYETJwGotc8vNXFMJhuWUn6HL3dx18O89xKRaF8329A58HxVjghQFl4QPaLlDTfAxBrBqHVyrw6eiRG0Fq5X6Fay2gtVO8BAc73f08xbqv9iv0QG42QEwfLpxEFQ0DjoDtQtgkqq9-2_HN7rSkfU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2280553903</pqid></control><display><type>article</type><title>Catalytic thermal degradation of Chlorella vulgaris: Evolving deep neural networks for optimization</title><source>Access via ScienceDirect (Elsevier)</source><creator>Teng, Sin Yong ; Loy, Adrian Chun Minh ; Leong, Wei Dong ; How, Bing Shen ; Chin, Bridgid Lai Fui ; Máša, Vítězslav</creator><creatorcontrib>Teng, Sin Yong ; Loy, Adrian Chun Minh ; Leong, Wei Dong ; How, Bing Shen ; Chin, Bridgid Lai Fui ; Máša, Vítězslav</creatorcontrib><description>[Display omitted] •Thermal behavior of C. vulgaris were analyzed.•Effects of the presence of limestone and HZSM-5 zeolite catalysts were investigated.•Novel PDSE neuro-evolution algorithm was proposed for neural architecture search.•Neuro-evolution achieved RMSE of 0.005–0.007, considered state-of-art for TGA studies.•Simulated Annealing was used in optimization of operating conditions of the pyrolysis. The aim of this study is to identify the optimum thermal conversion of Chlorella vulgaris with neuro-evolutionary approach. A Progressive Depth Swarm-Evolution (PDSE) neuro-evolutionary approach is proposed to model the Thermogravimetric analysis (TGA) data of catalytic thermal degradation of Chlorella vulgaris. Results showed that the proposed method can generate predictions which are more accurate compared to other conventional approaches (&gt;90% lower in Root Mean Square Error (RMSE) and Mean Bias Error (MBE)). In addition, Simulated Annealing is proposed to determine the optimal operating conditions for microalgae conversion from multiple trained ANN. The predicted optimum conditions were reaction temperature of 900.0 °C, heating rate of 5.0 °C/min with the presence of HZSM-5 zeolite catalyst to obtain 88.3% of Chlorella vulgaris conversion.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2019.121971</identifier><identifier>PMID: 31445240</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Artificial neuron network ; Microalgae ; Particle swarm optimization ; Simulated Annealing ; Thermogravimetric analysis</subject><ispartof>Bioresource technology, 2019-11, Vol.292, p.121971-121971, Article 121971</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright © 2019 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-8448f05237e77cafe50221dfba0dd0c58988fe597ec862efaa94f3cba19ec2413</citedby><cites>FETCH-LOGICAL-c453t-8448f05237e77cafe50221dfba0dd0c58988fe597ec862efaa94f3cba19ec2413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biortech.2019.121971$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31445240$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Teng, Sin Yong</creatorcontrib><creatorcontrib>Loy, Adrian Chun Minh</creatorcontrib><creatorcontrib>Leong, Wei Dong</creatorcontrib><creatorcontrib>How, Bing Shen</creatorcontrib><creatorcontrib>Chin, Bridgid Lai Fui</creatorcontrib><creatorcontrib>Máša, Vítězslav</creatorcontrib><title>Catalytic thermal degradation of Chlorella vulgaris: Evolving deep neural networks for optimization</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>[Display omitted] •Thermal behavior of C. vulgaris were analyzed.•Effects of the presence of limestone and HZSM-5 zeolite catalysts were investigated.•Novel PDSE neuro-evolution algorithm was proposed for neural architecture search.•Neuro-evolution achieved RMSE of 0.005–0.007, considered state-of-art for TGA studies.•Simulated Annealing was used in optimization of operating conditions of the pyrolysis. The aim of this study is to identify the optimum thermal conversion of Chlorella vulgaris with neuro-evolutionary approach. A Progressive Depth Swarm-Evolution (PDSE) neuro-evolutionary approach is proposed to model the Thermogravimetric analysis (TGA) data of catalytic thermal degradation of Chlorella vulgaris. Results showed that the proposed method can generate predictions which are more accurate compared to other conventional approaches (&gt;90% lower in Root Mean Square Error (RMSE) and Mean Bias Error (MBE)). In addition, Simulated Annealing is proposed to determine the optimal operating conditions for microalgae conversion from multiple trained ANN. The predicted optimum conditions were reaction temperature of 900.0 °C, heating rate of 5.0 °C/min with the presence of HZSM-5 zeolite catalyst to obtain 88.3% of Chlorella vulgaris conversion.</description><subject>Artificial neuron network</subject><subject>Microalgae</subject><subject>Particle swarm optimization</subject><subject>Simulated Annealing</subject><subject>Thermogravimetric analysis</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkMlOwzAQhi0EgrK8QuUjlxQvWWxOoKosEhIXOFuuM25dkrjYThE8PSktXDmNNPr-WT6ExpRMKKHl1Woydz4kMMsJI1ROKKOyogdoREXFMyar8hCNiCxJJgqWn6DTGFeEEE4rdoxOOM3zoU1GyEx10s1ncganJYRWN7iGRdC1Ts532Fs8XTY-QNNovOmbhQ4uXuPZxjcb1y0GFta4gz4MuQ7Shw9vEVsfsF8n17qvnynn6MjqJsLFvp6h17vZy_Qhe3q-f5zePmUmL3jKRJ4LSwrGK6gqoy0UhDFa27kmdU1MIaQQQ1NWYETJwGotc8vNXFMJhuWUn6HL3dx18O89xKRaF8329A58HxVjghQFl4QPaLlDTfAxBrBqHVyrw6eiRG0Fq5X6Fay2gtVO8BAc73f08xbqv9iv0QG42QEwfLpxEFQ0DjoDtQtgkqq9-2_HN7rSkfU</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Teng, Sin Yong</creator><creator>Loy, Adrian Chun Minh</creator><creator>Leong, Wei Dong</creator><creator>How, Bing Shen</creator><creator>Chin, Bridgid Lai Fui</creator><creator>Máša, Vítězslav</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20191101</creationdate><title>Catalytic thermal degradation of Chlorella vulgaris: Evolving deep neural networks for optimization</title><author>Teng, Sin Yong ; Loy, Adrian Chun Minh ; Leong, Wei Dong ; How, Bing Shen ; Chin, Bridgid Lai Fui ; Máša, Vítězslav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-8448f05237e77cafe50221dfba0dd0c58988fe597ec862efaa94f3cba19ec2413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial neuron network</topic><topic>Microalgae</topic><topic>Particle swarm optimization</topic><topic>Simulated Annealing</topic><topic>Thermogravimetric analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Teng, Sin Yong</creatorcontrib><creatorcontrib>Loy, Adrian Chun Minh</creatorcontrib><creatorcontrib>Leong, Wei Dong</creatorcontrib><creatorcontrib>How, Bing Shen</creatorcontrib><creatorcontrib>Chin, Bridgid Lai Fui</creatorcontrib><creatorcontrib>Máša, Vítězslav</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Teng, Sin Yong</au><au>Loy, Adrian Chun Minh</au><au>Leong, Wei Dong</au><au>How, Bing Shen</au><au>Chin, Bridgid Lai Fui</au><au>Máša, Vítězslav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catalytic thermal degradation of Chlorella vulgaris: Evolving deep neural networks for optimization</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2019-11-01</date><risdate>2019</risdate><volume>292</volume><spage>121971</spage><epage>121971</epage><pages>121971-121971</pages><artnum>121971</artnum><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>[Display omitted] •Thermal behavior of C. vulgaris were analyzed.•Effects of the presence of limestone and HZSM-5 zeolite catalysts were investigated.•Novel PDSE neuro-evolution algorithm was proposed for neural architecture search.•Neuro-evolution achieved RMSE of 0.005–0.007, considered state-of-art for TGA studies.•Simulated Annealing was used in optimization of operating conditions of the pyrolysis. The aim of this study is to identify the optimum thermal conversion of Chlorella vulgaris with neuro-evolutionary approach. A Progressive Depth Swarm-Evolution (PDSE) neuro-evolutionary approach is proposed to model the Thermogravimetric analysis (TGA) data of catalytic thermal degradation of Chlorella vulgaris. Results showed that the proposed method can generate predictions which are more accurate compared to other conventional approaches (&gt;90% lower in Root Mean Square Error (RMSE) and Mean Bias Error (MBE)). In addition, Simulated Annealing is proposed to determine the optimal operating conditions for microalgae conversion from multiple trained ANN. The predicted optimum conditions were reaction temperature of 900.0 °C, heating rate of 5.0 °C/min with the presence of HZSM-5 zeolite catalyst to obtain 88.3% of Chlorella vulgaris conversion.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>31445240</pmid><doi>10.1016/j.biortech.2019.121971</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-8524
ispartof Bioresource technology, 2019-11, Vol.292, p.121971-121971, Article 121971
issn 0960-8524
1873-2976
language eng
recordid cdi_proquest_miscellaneous_2280553903
source Access via ScienceDirect (Elsevier)
subjects Artificial neuron network
Microalgae
Particle swarm optimization
Simulated Annealing
Thermogravimetric analysis
title Catalytic thermal degradation of Chlorella vulgaris: Evolving deep neural networks for optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T07%3A01%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catalytic%20thermal%20degradation%20of%20Chlorella%20vulgaris:%20Evolving%20deep%20neural%20networks%20for%20optimization&rft.jtitle=Bioresource%20technology&rft.au=Teng,%20Sin%20Yong&rft.date=2019-11-01&rft.volume=292&rft.spage=121971&rft.epage=121971&rft.pages=121971-121971&rft.artnum=121971&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2019.121971&rft_dat=%3Cproquest_cross%3E2280553903%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2280553903&rft_id=info:pmid/31445240&rft_els_id=S0960852419312015&rfr_iscdi=true