An online updating approach for testing the proportional hazards assumption with streams of survival data
The Cox model—which remains the first choice for analyzing time‐to‐event data, even for large data sets—relies on the proportional hazards (PH) assumption. When survival data arrive sequentially in chunks, a fast and minimally storage intensive approach to test the PH assumption is desirable. We pro...
Gespeichert in:
Veröffentlicht in: | Biometrics 2020-03, Vol.76 (1), p.171-182 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 182 |
---|---|
container_issue | 1 |
container_start_page | 171 |
container_title | Biometrics |
container_volume | 76 |
creator | Xue, Yishu Wang, HaiYing Yan, Jun Schifano, Elizabeth D. |
description | The Cox model—which remains the first choice for analyzing time‐to‐event data, even for large data sets—relies on the proportional hazards (PH) assumption. When survival data arrive sequentially in chunks, a fast and minimally storage intensive approach to test the PH assumption is desirable. We propose an online updating approach that updates the standard test statistic as each new block of data becomes available and greatly lightens the computational burden. Under the null hypothesis of PH, the proposed statistic is shown to have the same asymptotic distribution as the standard version computed on an entire data stream with the data blocks pooled into one data set. In simulation studies, the test and its variant based on most recent data blocks maintain their sizes when the PH assumption holds and have substantial power to detect different violations of the PH assumption. We also show in simulation that our approach can be used successfully with “big data” that exceed a single computer's computational resources. The approach is illustrated with the survival analysis of patients with lymphoma cancer from the Surveillance, Epidemiology, and End Results Program. The proposed test promptly identified deviation from the PH assumption, which was not captured by the test based on the entire data. |
doi_str_mv | 10.1111/biom.13137 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2275951200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2375892207</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3577-d5137e94e176c8aa83a2506d2b2017092fc745cf7c2a0f3f8bebf2623cd8b09c3</originalsourceid><addsrcrecordid>eNp9kctOwzAQRS0EoqWw4QOQJTYIKcWPuE6WpeJRqagbkNhFjmNTV0kc7KRV-XrcByxYMJvRXB1dzcwF4BKjIQ51lxtbDTHFlB-BPmYxjlBM0DHoI4RGEY3xew-ceb8MY8oQOQU9imMSh6EPzLiGti5NrWDXFKI19QcUTeOskAuorYOt8juxXSgY5Ma61thalHAhvoQrPBTed1WzFeHatAvoW6dE5aHV0HduZVaBDcbiHJxoUXp1cegD8Pb48Dp5jmbzp-lkPIskZZxHBQt3qDRWmI9kIkRCBWFoVJCcIMxRSrTkMZOaSyKQpjrJVa7JiFBZJDlKJR2Am71v2PazC9tnlfFSlaWole18RghnKcMEoYBe_0GXtnPhuEBRzpKUEMQDdbunpLPeO6WzxplKuE2GUbYNINsGkO0CCPDVwbLLK1X8oj8fDwDeA2tTqs0_Vtn9dP6yN_0Ga1SRdA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2375892207</pqid></control><display><type>article</type><title>An online updating approach for testing the proportional hazards assumption with streams of survival data</title><source>Access via Wiley Online Library</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Xue, Yishu ; Wang, HaiYing ; Yan, Jun ; Schifano, Elizabeth D.</creator><creatorcontrib>Xue, Yishu ; Wang, HaiYing ; Yan, Jun ; Schifano, Elizabeth D.</creatorcontrib><description>The Cox model—which remains the first choice for analyzing time‐to‐event data, even for large data sets—relies on the proportional hazards (PH) assumption. When survival data arrive sequentially in chunks, a fast and minimally storage intensive approach to test the PH assumption is desirable. We propose an online updating approach that updates the standard test statistic as each new block of data becomes available and greatly lightens the computational burden. Under the null hypothesis of PH, the proposed statistic is shown to have the same asymptotic distribution as the standard version computed on an entire data stream with the data blocks pooled into one data set. In simulation studies, the test and its variant based on most recent data blocks maintain their sizes when the PH assumption holds and have substantial power to detect different violations of the PH assumption. We also show in simulation that our approach can be used successfully with “big data” that exceed a single computer's computational resources. The approach is illustrated with the survival analysis of patients with lymphoma cancer from the Surveillance, Epidemiology, and End Results Program. The proposed test promptly identified deviation from the PH assumption, which was not captured by the test based on the entire data.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/biom.13137</identifier><identifier>PMID: 31424095</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Computer applications ; Computer simulation ; Cox model ; Data transmission ; Datasets ; diagnostics ; Epidemiology ; Hazards ; Internet ; Lymphoma ; Schoenfeld residuals ; Survival ; Survival analysis</subject><ispartof>Biometrics, 2020-03, Vol.76 (1), p.171-182</ispartof><rights>2019 The International Biometric Society</rights><rights>2019 The International Biometric Society.</rights><rights>2020 The International Biometric Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3577-d5137e94e176c8aa83a2506d2b2017092fc745cf7c2a0f3f8bebf2623cd8b09c3</citedby><cites>FETCH-LOGICAL-c3577-d5137e94e176c8aa83a2506d2b2017092fc745cf7c2a0f3f8bebf2623cd8b09c3</cites><orcidid>0000-0002-9660-6087 ; 0000-0001-7729-0243 ; 0000-0002-9793-332X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fbiom.13137$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fbiom.13137$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31424095$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xue, Yishu</creatorcontrib><creatorcontrib>Wang, HaiYing</creatorcontrib><creatorcontrib>Yan, Jun</creatorcontrib><creatorcontrib>Schifano, Elizabeth D.</creatorcontrib><title>An online updating approach for testing the proportional hazards assumption with streams of survival data</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>The Cox model—which remains the first choice for analyzing time‐to‐event data, even for large data sets—relies on the proportional hazards (PH) assumption. When survival data arrive sequentially in chunks, a fast and minimally storage intensive approach to test the PH assumption is desirable. We propose an online updating approach that updates the standard test statistic as each new block of data becomes available and greatly lightens the computational burden. Under the null hypothesis of PH, the proposed statistic is shown to have the same asymptotic distribution as the standard version computed on an entire data stream with the data blocks pooled into one data set. In simulation studies, the test and its variant based on most recent data blocks maintain their sizes when the PH assumption holds and have substantial power to detect different violations of the PH assumption. We also show in simulation that our approach can be used successfully with “big data” that exceed a single computer's computational resources. The approach is illustrated with the survival analysis of patients with lymphoma cancer from the Surveillance, Epidemiology, and End Results Program. The proposed test promptly identified deviation from the PH assumption, which was not captured by the test based on the entire data.</description><subject>Computer applications</subject><subject>Computer simulation</subject><subject>Cox model</subject><subject>Data transmission</subject><subject>Datasets</subject><subject>diagnostics</subject><subject>Epidemiology</subject><subject>Hazards</subject><subject>Internet</subject><subject>Lymphoma</subject><subject>Schoenfeld residuals</subject><subject>Survival</subject><subject>Survival analysis</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kctOwzAQRS0EoqWw4QOQJTYIKcWPuE6WpeJRqagbkNhFjmNTV0kc7KRV-XrcByxYMJvRXB1dzcwF4BKjIQ51lxtbDTHFlB-BPmYxjlBM0DHoI4RGEY3xew-ceb8MY8oQOQU9imMSh6EPzLiGti5NrWDXFKI19QcUTeOskAuorYOt8juxXSgY5Ma61thalHAhvoQrPBTed1WzFeHatAvoW6dE5aHV0HduZVaBDcbiHJxoUXp1cegD8Pb48Dp5jmbzp-lkPIskZZxHBQt3qDRWmI9kIkRCBWFoVJCcIMxRSrTkMZOaSyKQpjrJVa7JiFBZJDlKJR2Am71v2PazC9tnlfFSlaWole18RghnKcMEoYBe_0GXtnPhuEBRzpKUEMQDdbunpLPeO6WzxplKuE2GUbYNINsGkO0CCPDVwbLLK1X8oj8fDwDeA2tTqs0_Vtn9dP6yN_0Ga1SRdA</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Xue, Yishu</creator><creator>Wang, HaiYing</creator><creator>Yan, Jun</creator><creator>Schifano, Elizabeth D.</creator><general>Blackwell Publishing Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9660-6087</orcidid><orcidid>https://orcid.org/0000-0001-7729-0243</orcidid><orcidid>https://orcid.org/0000-0002-9793-332X</orcidid></search><sort><creationdate>202003</creationdate><title>An online updating approach for testing the proportional hazards assumption with streams of survival data</title><author>Xue, Yishu ; Wang, HaiYing ; Yan, Jun ; Schifano, Elizabeth D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3577-d5137e94e176c8aa83a2506d2b2017092fc745cf7c2a0f3f8bebf2623cd8b09c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer applications</topic><topic>Computer simulation</topic><topic>Cox model</topic><topic>Data transmission</topic><topic>Datasets</topic><topic>diagnostics</topic><topic>Epidemiology</topic><topic>Hazards</topic><topic>Internet</topic><topic>Lymphoma</topic><topic>Schoenfeld residuals</topic><topic>Survival</topic><topic>Survival analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xue, Yishu</creatorcontrib><creatorcontrib>Wang, HaiYing</creatorcontrib><creatorcontrib>Yan, Jun</creatorcontrib><creatorcontrib>Schifano, Elizabeth D.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xue, Yishu</au><au>Wang, HaiYing</au><au>Yan, Jun</au><au>Schifano, Elizabeth D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An online updating approach for testing the proportional hazards assumption with streams of survival data</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2020-03</date><risdate>2020</risdate><volume>76</volume><issue>1</issue><spage>171</spage><epage>182</epage><pages>171-182</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><abstract>The Cox model—which remains the first choice for analyzing time‐to‐event data, even for large data sets—relies on the proportional hazards (PH) assumption. When survival data arrive sequentially in chunks, a fast and minimally storage intensive approach to test the PH assumption is desirable. We propose an online updating approach that updates the standard test statistic as each new block of data becomes available and greatly lightens the computational burden. Under the null hypothesis of PH, the proposed statistic is shown to have the same asymptotic distribution as the standard version computed on an entire data stream with the data blocks pooled into one data set. In simulation studies, the test and its variant based on most recent data blocks maintain their sizes when the PH assumption holds and have substantial power to detect different violations of the PH assumption. We also show in simulation that our approach can be used successfully with “big data” that exceed a single computer's computational resources. The approach is illustrated with the survival analysis of patients with lymphoma cancer from the Surveillance, Epidemiology, and End Results Program. The proposed test promptly identified deviation from the PH assumption, which was not captured by the test based on the entire data.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>31424095</pmid><doi>10.1111/biom.13137</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9660-6087</orcidid><orcidid>https://orcid.org/0000-0001-7729-0243</orcidid><orcidid>https://orcid.org/0000-0002-9793-332X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-341X |
ispartof | Biometrics, 2020-03, Vol.76 (1), p.171-182 |
issn | 0006-341X 1541-0420 |
language | eng |
recordid | cdi_proquest_miscellaneous_2275951200 |
source | Access via Wiley Online Library; Oxford University Press Journals All Titles (1996-Current) |
subjects | Computer applications Computer simulation Cox model Data transmission Datasets diagnostics Epidemiology Hazards Internet Lymphoma Schoenfeld residuals Survival Survival analysis |
title | An online updating approach for testing the proportional hazards assumption with streams of survival data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T23%3A26%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20online%20updating%20approach%20for%20testing%20the%20proportional%20hazards%20assumption%20with%20streams%20of%20survival%20data&rft.jtitle=Biometrics&rft.au=Xue,%20Yishu&rft.date=2020-03&rft.volume=76&rft.issue=1&rft.spage=171&rft.epage=182&rft.pages=171-182&rft.issn=0006-341X&rft.eissn=1541-0420&rft_id=info:doi/10.1111/biom.13137&rft_dat=%3Cproquest_cross%3E2375892207%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2375892207&rft_id=info:pmid/31424095&rfr_iscdi=true |