Conductive nanoparticles improve cell electropermeabilization
Conductive nanoparticles (NPs) were proposed to locally amplify the external electric field (EF) intensity at the cell surface to improve cell electroporation. To better understand the physical mechanisms behind this improvement, different types of NPs and several incubation conditions were applied...
Gespeichert in:
Veröffentlicht in: | Nanotechnology 2019-12, Vol.30 (49), p.495101-495101 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 495101 |
---|---|
container_issue | 49 |
container_start_page | 495101 |
container_title | Nanotechnology |
container_volume | 30 |
creator | Ghorbel, Amina Mir, Lluis M García-Sánchez, Tomás |
description | Conductive nanoparticles (NPs) were proposed to locally amplify the external electric field (EF) intensity at the cell surface to improve cell electroporation. To better understand the physical mechanisms behind this improvement, different types of NPs and several incubation conditions were applied to adherent cells in the present study. The enhancement of electroporation was observed in the presence of conductive NPs but not when non-conductive NPs were used. Experimental data demonstrate the influence of the incubation conditions between cells and NPs, which impact on the number and quality (aggregated or isolated) of the NPs surrounding the cells. While NPs can increase the number of electroporated cells, they have a more pronounced impact on the level permeabilization of each individual cell. Our results reveal the potential of conductive NPs to enhance the efficiency of electroporation via the amplification of the local EF at the cell surface as shown by numerical simulations. |
doi_str_mv | 10.1088/1361-6528/ab3be9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2275946003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2275946003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-f18e840d91aa678ed2de5045708baefe4ef4b694024ad09efb7f7fb6e50269ca3</originalsourceid><addsrcrecordid>eNp1kEtLxDAURoMoOj72rmSWCta5SdM2WbiQwRcMuNF1SNsbjLRNTVpBf70pM44bhUDgcr4vN4eQUwpXFIRY0DSnSZ4xsdBlWqLcIbPtaJfMQGZFwrngB-QwhDcASgWj--QgpZwxmYkZuV66rh6rwX7gvNOd67UfbNVgmNu29y5OK2yaOTZYDd716FvUpW3slx6s647JntFNwJPNfURe7m6flw_J6un-cXmzSirO6ZAYKlBwqCXVOi8E1qzGDHhWgCg1GuRoeJlLDozrGiSasjCFKfMIsVxWOj0iF-veV92o3ttW-0_ltFUPNys1zWISJBTFB43s-ZqN67-PGAbV2jB9QnfoxqAYKzLJc4A0orBGK-9C8Gi23RTUJFhNNtVkU60Fx8jZpn0sW6y3gR-jv6ta16s3N_ouilGTWpWC4jKejAJVfW0ie_kH--_b36XqkvQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2275946003</pqid></control><display><type>article</type><title>Conductive nanoparticles improve cell electropermeabilization</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Ghorbel, Amina ; Mir, Lluis M ; García-Sánchez, Tomás</creator><creatorcontrib>Ghorbel, Amina ; Mir, Lluis M ; García-Sánchez, Tomás</creatorcontrib><description>Conductive nanoparticles (NPs) were proposed to locally amplify the external electric field (EF) intensity at the cell surface to improve cell electroporation. To better understand the physical mechanisms behind this improvement, different types of NPs and several incubation conditions were applied to adherent cells in the present study. The enhancement of electroporation was observed in the presence of conductive NPs but not when non-conductive NPs were used. Experimental data demonstrate the influence of the incubation conditions between cells and NPs, which impact on the number and quality (aggregated or isolated) of the NPs surrounding the cells. While NPs can increase the number of electroporated cells, they have a more pronounced impact on the level permeabilization of each individual cell. Our results reveal the potential of conductive NPs to enhance the efficiency of electroporation via the amplification of the local EF at the cell surface as shown by numerical simulations.</description><identifier>ISSN: 0957-4484</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/1361-6528/ab3be9</identifier><identifier>PMID: 31422958</identifier><identifier>CODEN: NNOTER</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Animals ; Bleomycin - pharmacology ; Cell Adhesion - drug effects ; Cell Line ; Cell Membrane - drug effects ; Cell Membrane Permeability - drug effects ; conductive nanoparticles ; Cricetulus ; Electric Conductivity ; Electrodes ; Electromagnetic Fields ; electropermeabilization ; electroporation ; Electroporation - methods ; Epithelial Cells - cytology ; Epithelial Cells - drug effects ; Epithelial Cells - metabolism ; Life Sciences ; local electric field ; Nanoparticles - chemistry ; Nanoparticles - metabolism ; Nanoparticles - ultrastructure ; Platinum - chemistry ; Platinum - pharmacology ; Silicon Dioxide - chemistry ; Silicon Dioxide - pharmacology</subject><ispartof>Nanotechnology, 2019-12, Vol.30 (49), p.495101-495101</ispartof><rights>2019 IOP Publishing Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-f18e840d91aa678ed2de5045708baefe4ef4b694024ad09efb7f7fb6e50269ca3</citedby><cites>FETCH-LOGICAL-c441t-f18e840d91aa678ed2de5045708baefe4ef4b694024ad09efb7f7fb6e50269ca3</cites><orcidid>0000-0002-1115-0683 ; 0000-0002-7363-2194 ; 0000-0002-8671-9467</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6528/ab3be9/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,780,784,885,27924,27925,53846,53893</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31422958$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02409077$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghorbel, Amina</creatorcontrib><creatorcontrib>Mir, Lluis M</creatorcontrib><creatorcontrib>García-Sánchez, Tomás</creatorcontrib><title>Conductive nanoparticles improve cell electropermeabilization</title><title>Nanotechnology</title><addtitle>NANO</addtitle><addtitle>Nanotechnology</addtitle><description>Conductive nanoparticles (NPs) were proposed to locally amplify the external electric field (EF) intensity at the cell surface to improve cell electroporation. To better understand the physical mechanisms behind this improvement, different types of NPs and several incubation conditions were applied to adherent cells in the present study. The enhancement of electroporation was observed in the presence of conductive NPs but not when non-conductive NPs were used. Experimental data demonstrate the influence of the incubation conditions between cells and NPs, which impact on the number and quality (aggregated or isolated) of the NPs surrounding the cells. While NPs can increase the number of electroporated cells, they have a more pronounced impact on the level permeabilization of each individual cell. Our results reveal the potential of conductive NPs to enhance the efficiency of electroporation via the amplification of the local EF at the cell surface as shown by numerical simulations.</description><subject>Animals</subject><subject>Bleomycin - pharmacology</subject><subject>Cell Adhesion - drug effects</subject><subject>Cell Line</subject><subject>Cell Membrane - drug effects</subject><subject>Cell Membrane Permeability - drug effects</subject><subject>conductive nanoparticles</subject><subject>Cricetulus</subject><subject>Electric Conductivity</subject><subject>Electrodes</subject><subject>Electromagnetic Fields</subject><subject>electropermeabilization</subject><subject>electroporation</subject><subject>Electroporation - methods</subject><subject>Epithelial Cells - cytology</subject><subject>Epithelial Cells - drug effects</subject><subject>Epithelial Cells - metabolism</subject><subject>Life Sciences</subject><subject>local electric field</subject><subject>Nanoparticles - chemistry</subject><subject>Nanoparticles - metabolism</subject><subject>Nanoparticles - ultrastructure</subject><subject>Platinum - chemistry</subject><subject>Platinum - pharmacology</subject><subject>Silicon Dioxide - chemistry</subject><subject>Silicon Dioxide - pharmacology</subject><issn>0957-4484</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEtLxDAURoMoOj72rmSWCta5SdM2WbiQwRcMuNF1SNsbjLRNTVpBf70pM44bhUDgcr4vN4eQUwpXFIRY0DSnSZ4xsdBlWqLcIbPtaJfMQGZFwrngB-QwhDcASgWj--QgpZwxmYkZuV66rh6rwX7gvNOd67UfbNVgmNu29y5OK2yaOTZYDd716FvUpW3slx6s647JntFNwJPNfURe7m6flw_J6un-cXmzSirO6ZAYKlBwqCXVOi8E1qzGDHhWgCg1GuRoeJlLDozrGiSasjCFKfMIsVxWOj0iF-veV92o3ttW-0_ltFUPNys1zWISJBTFB43s-ZqN67-PGAbV2jB9QnfoxqAYKzLJc4A0orBGK-9C8Gi23RTUJFhNNtVkU60Fx8jZpn0sW6y3gR-jv6ta16s3N_ouilGTWpWC4jKejAJVfW0ie_kH--_b36XqkvQ</recordid><startdate>20191206</startdate><enddate>20191206</enddate><creator>Ghorbel, Amina</creator><creator>Mir, Lluis M</creator><creator>García-Sánchez, Tomás</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-1115-0683</orcidid><orcidid>https://orcid.org/0000-0002-7363-2194</orcidid><orcidid>https://orcid.org/0000-0002-8671-9467</orcidid></search><sort><creationdate>20191206</creationdate><title>Conductive nanoparticles improve cell electropermeabilization</title><author>Ghorbel, Amina ; Mir, Lluis M ; García-Sánchez, Tomás</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-f18e840d91aa678ed2de5045708baefe4ef4b694024ad09efb7f7fb6e50269ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Bleomycin - pharmacology</topic><topic>Cell Adhesion - drug effects</topic><topic>Cell Line</topic><topic>Cell Membrane - drug effects</topic><topic>Cell Membrane Permeability - drug effects</topic><topic>conductive nanoparticles</topic><topic>Cricetulus</topic><topic>Electric Conductivity</topic><topic>Electrodes</topic><topic>Electromagnetic Fields</topic><topic>electropermeabilization</topic><topic>electroporation</topic><topic>Electroporation - methods</topic><topic>Epithelial Cells - cytology</topic><topic>Epithelial Cells - drug effects</topic><topic>Epithelial Cells - metabolism</topic><topic>Life Sciences</topic><topic>local electric field</topic><topic>Nanoparticles - chemistry</topic><topic>Nanoparticles - metabolism</topic><topic>Nanoparticles - ultrastructure</topic><topic>Platinum - chemistry</topic><topic>Platinum - pharmacology</topic><topic>Silicon Dioxide - chemistry</topic><topic>Silicon Dioxide - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghorbel, Amina</creatorcontrib><creatorcontrib>Mir, Lluis M</creatorcontrib><creatorcontrib>García-Sánchez, Tomás</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghorbel, Amina</au><au>Mir, Lluis M</au><au>García-Sánchez, Tomás</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conductive nanoparticles improve cell electropermeabilization</atitle><jtitle>Nanotechnology</jtitle><stitle>NANO</stitle><addtitle>Nanotechnology</addtitle><date>2019-12-06</date><risdate>2019</risdate><volume>30</volume><issue>49</issue><spage>495101</spage><epage>495101</epage><pages>495101-495101</pages><issn>0957-4484</issn><eissn>1361-6528</eissn><coden>NNOTER</coden><abstract>Conductive nanoparticles (NPs) were proposed to locally amplify the external electric field (EF) intensity at the cell surface to improve cell electroporation. To better understand the physical mechanisms behind this improvement, different types of NPs and several incubation conditions were applied to adherent cells in the present study. The enhancement of electroporation was observed in the presence of conductive NPs but not when non-conductive NPs were used. Experimental data demonstrate the influence of the incubation conditions between cells and NPs, which impact on the number and quality (aggregated or isolated) of the NPs surrounding the cells. While NPs can increase the number of electroporated cells, they have a more pronounced impact on the level permeabilization of each individual cell. Our results reveal the potential of conductive NPs to enhance the efficiency of electroporation via the amplification of the local EF at the cell surface as shown by numerical simulations.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>31422958</pmid><doi>10.1088/1361-6528/ab3be9</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1115-0683</orcidid><orcidid>https://orcid.org/0000-0002-7363-2194</orcidid><orcidid>https://orcid.org/0000-0002-8671-9467</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4484 |
ispartof | Nanotechnology, 2019-12, Vol.30 (49), p.495101-495101 |
issn | 0957-4484 1361-6528 |
language | eng |
recordid | cdi_proquest_miscellaneous_2275946003 |
source | MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Animals Bleomycin - pharmacology Cell Adhesion - drug effects Cell Line Cell Membrane - drug effects Cell Membrane Permeability - drug effects conductive nanoparticles Cricetulus Electric Conductivity Electrodes Electromagnetic Fields electropermeabilization electroporation Electroporation - methods Epithelial Cells - cytology Epithelial Cells - drug effects Epithelial Cells - metabolism Life Sciences local electric field Nanoparticles - chemistry Nanoparticles - metabolism Nanoparticles - ultrastructure Platinum - chemistry Platinum - pharmacology Silicon Dioxide - chemistry Silicon Dioxide - pharmacology |
title | Conductive nanoparticles improve cell electropermeabilization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A11%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conductive%20nanoparticles%20improve%20cell%20electropermeabilization&rft.jtitle=Nanotechnology&rft.au=Ghorbel,%20Amina&rft.date=2019-12-06&rft.volume=30&rft.issue=49&rft.spage=495101&rft.epage=495101&rft.pages=495101-495101&rft.issn=0957-4484&rft.eissn=1361-6528&rft.coden=NNOTER&rft_id=info:doi/10.1088/1361-6528/ab3be9&rft_dat=%3Cproquest_pubme%3E2275946003%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2275946003&rft_id=info:pmid/31422958&rfr_iscdi=true |