Numerical simulation of electroosmosis regulated peristaltic transport of Bingham nanofluid
•Nanoparticle phenomena has been highlighted.•Electroosmotic flow is considered of Bingham fluid.•Mathematical peristaltic flow on Bingham Nanofluid.•Walls are assumed to be flexible.•Exact and analytical solutions are presented. The effects of slip condition and Joule heating on the peristaltic flo...
Gespeichert in:
Veröffentlicht in: | Computer methods and programs in biomedicine 2019-10, Vol.180, p.105005-105005, Article 105005 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 105005 |
---|---|
container_issue | |
container_start_page | 105005 |
container_title | Computer methods and programs in biomedicine |
container_volume | 180 |
creator | Tanveer, Anum Khan, Mair Salahuddin, T. Malik, M.Y. |
description | •Nanoparticle phenomena has been highlighted.•Electroosmotic flow is considered of Bingham fluid.•Mathematical peristaltic flow on Bingham Nanofluid.•Walls are assumed to be flexible.•Exact and analytical solutions are presented.
The effects of slip condition and Joule heating on the peristaltic flow of Bingham nanofluid are investigated. The flow is taken in a porous channel with elastic walls. Mathematical formulation is presented under the assumption of long wavelength and small Reynolds number. The transformed equations for the flow are solved to seek values for the nanoparticles velocity, concentration and temperature along the channel length. Graphs are plotted to evaluate the behavior of various physical parameters on flow quantities in both slip and no-slip cases. The main features of the physical parameters are highlighted on the inclined non uniform channel. The results show an increment in velocity with rise in inclination and porosity while it reduces with magnetic field. Moreover, nanofluid favors the heat transfer and decline the concentration. |
doi_str_mv | 10.1016/j.cmpb.2019.105005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2275312187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169260719304365</els_id><sourcerecordid>2275312187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-3f140e9dbe685379e96d1e61950946c75b763555bfedbc3ec73213a639aa90f63</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EoqXwBxhQRpYUf9ROLbFAxZdUwQITg-U4l-IqjoOdIPHvcdTCyHTS3fO-0j0InRM8J5iIq-3cuK6cU0xkWnCM-QGakmVB84ILfoimCZI5FbiYoJMYtxhjyrk4RhNGFpQIjKfo_XlwEKzRTRatGxrdW99mvs6gAdMH76Pz0cYswGY8QpV1CY-9bnprsj7oNnY-9GPi1rabD-2yVre-bgZbnaKjWjcRzvZzht7u715Xj_n65eFpdbPODeOiz1lNFhhkVYJYclZIkKIiIIjkWC6EKXhZCMY5L2uoSsPAFIwSpgWTWktcCzZDl7veLvjPAWKvnI0Gmka34IeoKC04IzSZSSjdoSb4GAPUqgvW6fCtCFajVLVVo1Q1SlU7qSl0se8fSgfVX-TXYgKudwCkL78sBBWNhdZAZUOyqCpv_-v_Ab9kiWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2275312187</pqid></control><display><type>article</type><title>Numerical simulation of electroosmosis regulated peristaltic transport of Bingham nanofluid</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Tanveer, Anum ; Khan, Mair ; Salahuddin, T. ; Malik, M.Y.</creator><creatorcontrib>Tanveer, Anum ; Khan, Mair ; Salahuddin, T. ; Malik, M.Y.</creatorcontrib><description>•Nanoparticle phenomena has been highlighted.•Electroosmotic flow is considered of Bingham fluid.•Mathematical peristaltic flow on Bingham Nanofluid.•Walls are assumed to be flexible.•Exact and analytical solutions are presented.
The effects of slip condition and Joule heating on the peristaltic flow of Bingham nanofluid are investigated. The flow is taken in a porous channel with elastic walls. Mathematical formulation is presented under the assumption of long wavelength and small Reynolds number. The transformed equations for the flow are solved to seek values for the nanoparticles velocity, concentration and temperature along the channel length. Graphs are plotted to evaluate the behavior of various physical parameters on flow quantities in both slip and no-slip cases. The main features of the physical parameters are highlighted on the inclined non uniform channel. The results show an increment in velocity with rise in inclination and porosity while it reduces with magnetic field. Moreover, nanofluid favors the heat transfer and decline the concentration.</description><identifier>ISSN: 0169-2607</identifier><identifier>EISSN: 1872-7565</identifier><identifier>DOI: 10.1016/j.cmpb.2019.105005</identifier><identifier>PMID: 31421600</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>Bingham fluid ; Convective conditions ; Electroosmosis ; Heat transfer ; Hydrodynamics ; Joule heating ; Models, Statistical ; Nanoparticles ; Peristalsis - physiology ; Rheology ; Slip conditions ; Solutions - chemistry ; Thermal Conductivity ; Wall properties</subject><ispartof>Computer methods and programs in biomedicine, 2019-10, Vol.180, p.105005-105005, Article 105005</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright © 2019 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-3f140e9dbe685379e96d1e61950946c75b763555bfedbc3ec73213a639aa90f63</citedby><cites>FETCH-LOGICAL-c356t-3f140e9dbe685379e96d1e61950946c75b763555bfedbc3ec73213a639aa90f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cmpb.2019.105005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31421600$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tanveer, Anum</creatorcontrib><creatorcontrib>Khan, Mair</creatorcontrib><creatorcontrib>Salahuddin, T.</creatorcontrib><creatorcontrib>Malik, M.Y.</creatorcontrib><title>Numerical simulation of electroosmosis regulated peristaltic transport of Bingham nanofluid</title><title>Computer methods and programs in biomedicine</title><addtitle>Comput Methods Programs Biomed</addtitle><description>•Nanoparticle phenomena has been highlighted.•Electroosmotic flow is considered of Bingham fluid.•Mathematical peristaltic flow on Bingham Nanofluid.•Walls are assumed to be flexible.•Exact and analytical solutions are presented.
The effects of slip condition and Joule heating on the peristaltic flow of Bingham nanofluid are investigated. The flow is taken in a porous channel with elastic walls. Mathematical formulation is presented under the assumption of long wavelength and small Reynolds number. The transformed equations for the flow are solved to seek values for the nanoparticles velocity, concentration and temperature along the channel length. Graphs are plotted to evaluate the behavior of various physical parameters on flow quantities in both slip and no-slip cases. The main features of the physical parameters are highlighted on the inclined non uniform channel. The results show an increment in velocity with rise in inclination and porosity while it reduces with magnetic field. Moreover, nanofluid favors the heat transfer and decline the concentration.</description><subject>Bingham fluid</subject><subject>Convective conditions</subject><subject>Electroosmosis</subject><subject>Heat transfer</subject><subject>Hydrodynamics</subject><subject>Joule heating</subject><subject>Models, Statistical</subject><subject>Nanoparticles</subject><subject>Peristalsis - physiology</subject><subject>Rheology</subject><subject>Slip conditions</subject><subject>Solutions - chemistry</subject><subject>Thermal Conductivity</subject><subject>Wall properties</subject><issn>0169-2607</issn><issn>1872-7565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kD1PwzAQhi0EoqXwBxhQRpYUf9ROLbFAxZdUwQITg-U4l-IqjoOdIPHvcdTCyHTS3fO-0j0InRM8J5iIq-3cuK6cU0xkWnCM-QGakmVB84ILfoimCZI5FbiYoJMYtxhjyrk4RhNGFpQIjKfo_XlwEKzRTRatGxrdW99mvs6gAdMH76Pz0cYswGY8QpV1CY-9bnprsj7oNnY-9GPi1rabD-2yVre-bgZbnaKjWjcRzvZzht7u715Xj_n65eFpdbPODeOiz1lNFhhkVYJYclZIkKIiIIjkWC6EKXhZCMY5L2uoSsPAFIwSpgWTWktcCzZDl7veLvjPAWKvnI0Gmka34IeoKC04IzSZSSjdoSb4GAPUqgvW6fCtCFajVLVVo1Q1SlU7qSl0se8fSgfVX-TXYgKudwCkL78sBBWNhdZAZUOyqCpv_-v_Ab9kiWA</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Tanveer, Anum</creator><creator>Khan, Mair</creator><creator>Salahuddin, T.</creator><creator>Malik, M.Y.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201910</creationdate><title>Numerical simulation of electroosmosis regulated peristaltic transport of Bingham nanofluid</title><author>Tanveer, Anum ; Khan, Mair ; Salahuddin, T. ; Malik, M.Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-3f140e9dbe685379e96d1e61950946c75b763555bfedbc3ec73213a639aa90f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bingham fluid</topic><topic>Convective conditions</topic><topic>Electroosmosis</topic><topic>Heat transfer</topic><topic>Hydrodynamics</topic><topic>Joule heating</topic><topic>Models, Statistical</topic><topic>Nanoparticles</topic><topic>Peristalsis - physiology</topic><topic>Rheology</topic><topic>Slip conditions</topic><topic>Solutions - chemistry</topic><topic>Thermal Conductivity</topic><topic>Wall properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tanveer, Anum</creatorcontrib><creatorcontrib>Khan, Mair</creatorcontrib><creatorcontrib>Salahuddin, T.</creatorcontrib><creatorcontrib>Malik, M.Y.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Computer methods and programs in biomedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tanveer, Anum</au><au>Khan, Mair</au><au>Salahuddin, T.</au><au>Malik, M.Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of electroosmosis regulated peristaltic transport of Bingham nanofluid</atitle><jtitle>Computer methods and programs in biomedicine</jtitle><addtitle>Comput Methods Programs Biomed</addtitle><date>2019-10</date><risdate>2019</risdate><volume>180</volume><spage>105005</spage><epage>105005</epage><pages>105005-105005</pages><artnum>105005</artnum><issn>0169-2607</issn><eissn>1872-7565</eissn><abstract>•Nanoparticle phenomena has been highlighted.•Electroosmotic flow is considered of Bingham fluid.•Mathematical peristaltic flow on Bingham Nanofluid.•Walls are assumed to be flexible.•Exact and analytical solutions are presented.
The effects of slip condition and Joule heating on the peristaltic flow of Bingham nanofluid are investigated. The flow is taken in a porous channel with elastic walls. Mathematical formulation is presented under the assumption of long wavelength and small Reynolds number. The transformed equations for the flow are solved to seek values for the nanoparticles velocity, concentration and temperature along the channel length. Graphs are plotted to evaluate the behavior of various physical parameters on flow quantities in both slip and no-slip cases. The main features of the physical parameters are highlighted on the inclined non uniform channel. The results show an increment in velocity with rise in inclination and porosity while it reduces with magnetic field. Moreover, nanofluid favors the heat transfer and decline the concentration.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>31421600</pmid><doi>10.1016/j.cmpb.2019.105005</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-2607 |
ispartof | Computer methods and programs in biomedicine, 2019-10, Vol.180, p.105005-105005, Article 105005 |
issn | 0169-2607 1872-7565 |
language | eng |
recordid | cdi_proquest_miscellaneous_2275312187 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Bingham fluid Convective conditions Electroosmosis Heat transfer Hydrodynamics Joule heating Models, Statistical Nanoparticles Peristalsis - physiology Rheology Slip conditions Solutions - chemistry Thermal Conductivity Wall properties |
title | Numerical simulation of electroosmosis regulated peristaltic transport of Bingham nanofluid |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A57%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20electroosmosis%20regulated%20peristaltic%20transport%20of%20Bingham%20nanofluid&rft.jtitle=Computer%20methods%20and%20programs%20in%20biomedicine&rft.au=Tanveer,%20Anum&rft.date=2019-10&rft.volume=180&rft.spage=105005&rft.epage=105005&rft.pages=105005-105005&rft.artnum=105005&rft.issn=0169-2607&rft.eissn=1872-7565&rft_id=info:doi/10.1016/j.cmpb.2019.105005&rft_dat=%3Cproquest_cross%3E2275312187%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2275312187&rft_id=info:pmid/31421600&rft_els_id=S0169260719304365&rfr_iscdi=true |