Numerical simulation of electroosmosis regulated peristaltic transport of Bingham nanofluid

•Nanoparticle phenomena has been highlighted.•Electroosmotic flow is considered of Bingham fluid.•Mathematical peristaltic flow on Bingham Nanofluid.•Walls are assumed to be flexible.•Exact and analytical solutions are presented. The effects of slip condition and Joule heating on the peristaltic flo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods and programs in biomedicine 2019-10, Vol.180, p.105005-105005, Article 105005
Hauptverfasser: Tanveer, Anum, Khan, Mair, Salahuddin, T., Malik, M.Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 105005
container_issue
container_start_page 105005
container_title Computer methods and programs in biomedicine
container_volume 180
creator Tanveer, Anum
Khan, Mair
Salahuddin, T.
Malik, M.Y.
description •Nanoparticle phenomena has been highlighted.•Electroosmotic flow is considered of Bingham fluid.•Mathematical peristaltic flow on Bingham Nanofluid.•Walls are assumed to be flexible.•Exact and analytical solutions are presented. The effects of slip condition and Joule heating on the peristaltic flow of Bingham nanofluid are investigated. The flow is taken in a porous channel with elastic walls. Mathematical formulation is presented under the assumption of long wavelength and small Reynolds number. The transformed equations for the flow are solved to seek values for the nanoparticles velocity, concentration and temperature along the channel length. Graphs are plotted to evaluate the behavior of various physical parameters on flow quantities in both slip and no-slip cases. The main features of the physical parameters are highlighted on the inclined non uniform channel. The results show an increment in velocity with rise in inclination and porosity while it reduces with magnetic field. Moreover, nanofluid favors the heat transfer and decline the concentration.
doi_str_mv 10.1016/j.cmpb.2019.105005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2275312187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169260719304365</els_id><sourcerecordid>2275312187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-3f140e9dbe685379e96d1e61950946c75b763555bfedbc3ec73213a639aa90f63</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EoqXwBxhQRpYUf9ROLbFAxZdUwQITg-U4l-IqjoOdIPHvcdTCyHTS3fO-0j0InRM8J5iIq-3cuK6cU0xkWnCM-QGakmVB84ILfoimCZI5FbiYoJMYtxhjyrk4RhNGFpQIjKfo_XlwEKzRTRatGxrdW99mvs6gAdMH76Pz0cYswGY8QpV1CY-9bnprsj7oNnY-9GPi1rabD-2yVre-bgZbnaKjWjcRzvZzht7u715Xj_n65eFpdbPODeOiz1lNFhhkVYJYclZIkKIiIIjkWC6EKXhZCMY5L2uoSsPAFIwSpgWTWktcCzZDl7veLvjPAWKvnI0Gmka34IeoKC04IzSZSSjdoSb4GAPUqgvW6fCtCFajVLVVo1Q1SlU7qSl0se8fSgfVX-TXYgKudwCkL78sBBWNhdZAZUOyqCpv_-v_Ab9kiWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2275312187</pqid></control><display><type>article</type><title>Numerical simulation of electroosmosis regulated peristaltic transport of Bingham nanofluid</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Tanveer, Anum ; Khan, Mair ; Salahuddin, T. ; Malik, M.Y.</creator><creatorcontrib>Tanveer, Anum ; Khan, Mair ; Salahuddin, T. ; Malik, M.Y.</creatorcontrib><description>•Nanoparticle phenomena has been highlighted.•Electroosmotic flow is considered of Bingham fluid.•Mathematical peristaltic flow on Bingham Nanofluid.•Walls are assumed to be flexible.•Exact and analytical solutions are presented. The effects of slip condition and Joule heating on the peristaltic flow of Bingham nanofluid are investigated. The flow is taken in a porous channel with elastic walls. Mathematical formulation is presented under the assumption of long wavelength and small Reynolds number. The transformed equations for the flow are solved to seek values for the nanoparticles velocity, concentration and temperature along the channel length. Graphs are plotted to evaluate the behavior of various physical parameters on flow quantities in both slip and no-slip cases. The main features of the physical parameters are highlighted on the inclined non uniform channel. The results show an increment in velocity with rise in inclination and porosity while it reduces with magnetic field. Moreover, nanofluid favors the heat transfer and decline the concentration.</description><identifier>ISSN: 0169-2607</identifier><identifier>EISSN: 1872-7565</identifier><identifier>DOI: 10.1016/j.cmpb.2019.105005</identifier><identifier>PMID: 31421600</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>Bingham fluid ; Convective conditions ; Electroosmosis ; Heat transfer ; Hydrodynamics ; Joule heating ; Models, Statistical ; Nanoparticles ; Peristalsis - physiology ; Rheology ; Slip conditions ; Solutions - chemistry ; Thermal Conductivity ; Wall properties</subject><ispartof>Computer methods and programs in biomedicine, 2019-10, Vol.180, p.105005-105005, Article 105005</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright © 2019 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-3f140e9dbe685379e96d1e61950946c75b763555bfedbc3ec73213a639aa90f63</citedby><cites>FETCH-LOGICAL-c356t-3f140e9dbe685379e96d1e61950946c75b763555bfedbc3ec73213a639aa90f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cmpb.2019.105005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31421600$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tanveer, Anum</creatorcontrib><creatorcontrib>Khan, Mair</creatorcontrib><creatorcontrib>Salahuddin, T.</creatorcontrib><creatorcontrib>Malik, M.Y.</creatorcontrib><title>Numerical simulation of electroosmosis regulated peristaltic transport of Bingham nanofluid</title><title>Computer methods and programs in biomedicine</title><addtitle>Comput Methods Programs Biomed</addtitle><description>•Nanoparticle phenomena has been highlighted.•Electroosmotic flow is considered of Bingham fluid.•Mathematical peristaltic flow on Bingham Nanofluid.•Walls are assumed to be flexible.•Exact and analytical solutions are presented. The effects of slip condition and Joule heating on the peristaltic flow of Bingham nanofluid are investigated. The flow is taken in a porous channel with elastic walls. Mathematical formulation is presented under the assumption of long wavelength and small Reynolds number. The transformed equations for the flow are solved to seek values for the nanoparticles velocity, concentration and temperature along the channel length. Graphs are plotted to evaluate the behavior of various physical parameters on flow quantities in both slip and no-slip cases. The main features of the physical parameters are highlighted on the inclined non uniform channel. The results show an increment in velocity with rise in inclination and porosity while it reduces with magnetic field. Moreover, nanofluid favors the heat transfer and decline the concentration.</description><subject>Bingham fluid</subject><subject>Convective conditions</subject><subject>Electroosmosis</subject><subject>Heat transfer</subject><subject>Hydrodynamics</subject><subject>Joule heating</subject><subject>Models, Statistical</subject><subject>Nanoparticles</subject><subject>Peristalsis - physiology</subject><subject>Rheology</subject><subject>Slip conditions</subject><subject>Solutions - chemistry</subject><subject>Thermal Conductivity</subject><subject>Wall properties</subject><issn>0169-2607</issn><issn>1872-7565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kD1PwzAQhi0EoqXwBxhQRpYUf9ROLbFAxZdUwQITg-U4l-IqjoOdIPHvcdTCyHTS3fO-0j0InRM8J5iIq-3cuK6cU0xkWnCM-QGakmVB84ILfoimCZI5FbiYoJMYtxhjyrk4RhNGFpQIjKfo_XlwEKzRTRatGxrdW99mvs6gAdMH76Pz0cYswGY8QpV1CY-9bnprsj7oNnY-9GPi1rabD-2yVre-bgZbnaKjWjcRzvZzht7u715Xj_n65eFpdbPODeOiz1lNFhhkVYJYclZIkKIiIIjkWC6EKXhZCMY5L2uoSsPAFIwSpgWTWktcCzZDl7veLvjPAWKvnI0Gmka34IeoKC04IzSZSSjdoSb4GAPUqgvW6fCtCFajVLVVo1Q1SlU7qSl0se8fSgfVX-TXYgKudwCkL78sBBWNhdZAZUOyqCpv_-v_Ab9kiWA</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Tanveer, Anum</creator><creator>Khan, Mair</creator><creator>Salahuddin, T.</creator><creator>Malik, M.Y.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201910</creationdate><title>Numerical simulation of electroosmosis regulated peristaltic transport of Bingham nanofluid</title><author>Tanveer, Anum ; Khan, Mair ; Salahuddin, T. ; Malik, M.Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-3f140e9dbe685379e96d1e61950946c75b763555bfedbc3ec73213a639aa90f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bingham fluid</topic><topic>Convective conditions</topic><topic>Electroosmosis</topic><topic>Heat transfer</topic><topic>Hydrodynamics</topic><topic>Joule heating</topic><topic>Models, Statistical</topic><topic>Nanoparticles</topic><topic>Peristalsis - physiology</topic><topic>Rheology</topic><topic>Slip conditions</topic><topic>Solutions - chemistry</topic><topic>Thermal Conductivity</topic><topic>Wall properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tanveer, Anum</creatorcontrib><creatorcontrib>Khan, Mair</creatorcontrib><creatorcontrib>Salahuddin, T.</creatorcontrib><creatorcontrib>Malik, M.Y.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Computer methods and programs in biomedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tanveer, Anum</au><au>Khan, Mair</au><au>Salahuddin, T.</au><au>Malik, M.Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of electroosmosis regulated peristaltic transport of Bingham nanofluid</atitle><jtitle>Computer methods and programs in biomedicine</jtitle><addtitle>Comput Methods Programs Biomed</addtitle><date>2019-10</date><risdate>2019</risdate><volume>180</volume><spage>105005</spage><epage>105005</epage><pages>105005-105005</pages><artnum>105005</artnum><issn>0169-2607</issn><eissn>1872-7565</eissn><abstract>•Nanoparticle phenomena has been highlighted.•Electroosmotic flow is considered of Bingham fluid.•Mathematical peristaltic flow on Bingham Nanofluid.•Walls are assumed to be flexible.•Exact and analytical solutions are presented. The effects of slip condition and Joule heating on the peristaltic flow of Bingham nanofluid are investigated. The flow is taken in a porous channel with elastic walls. Mathematical formulation is presented under the assumption of long wavelength and small Reynolds number. The transformed equations for the flow are solved to seek values for the nanoparticles velocity, concentration and temperature along the channel length. Graphs are plotted to evaluate the behavior of various physical parameters on flow quantities in both slip and no-slip cases. The main features of the physical parameters are highlighted on the inclined non uniform channel. The results show an increment in velocity with rise in inclination and porosity while it reduces with magnetic field. Moreover, nanofluid favors the heat transfer and decline the concentration.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>31421600</pmid><doi>10.1016/j.cmpb.2019.105005</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0169-2607
ispartof Computer methods and programs in biomedicine, 2019-10, Vol.180, p.105005-105005, Article 105005
issn 0169-2607
1872-7565
language eng
recordid cdi_proquest_miscellaneous_2275312187
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Bingham fluid
Convective conditions
Electroosmosis
Heat transfer
Hydrodynamics
Joule heating
Models, Statistical
Nanoparticles
Peristalsis - physiology
Rheology
Slip conditions
Solutions - chemistry
Thermal Conductivity
Wall properties
title Numerical simulation of electroosmosis regulated peristaltic transport of Bingham nanofluid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A57%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20electroosmosis%20regulated%20peristaltic%20transport%20of%20Bingham%20nanofluid&rft.jtitle=Computer%20methods%20and%20programs%20in%20biomedicine&rft.au=Tanveer,%20Anum&rft.date=2019-10&rft.volume=180&rft.spage=105005&rft.epage=105005&rft.pages=105005-105005&rft.artnum=105005&rft.issn=0169-2607&rft.eissn=1872-7565&rft_id=info:doi/10.1016/j.cmpb.2019.105005&rft_dat=%3Cproquest_cross%3E2275312187%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2275312187&rft_id=info:pmid/31421600&rft_els_id=S0169260719304365&rfr_iscdi=true