Tie2-FGFR1 Interaction Induces Adaptive PI3K Inhibitor Resistance by Upregulating Aurora A/PLK1/CDK1 Signaling in Glioblastoma

PI3K-targeting therapy represents one of the most sought-after therapies for glioblastoma (GBM). Several small-molecule inhibitors have been evaluated in clinical trials, however, the emergence of resistance limits treatment potential. Here, we generated a patient-derived glioma sphere-forming cell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer research (Chicago, Ill.) Ill.), 2019-10, Vol.79 (19), p.5088-5101
Hauptverfasser: Li, Xiaolong, Martinez-Ledesma, Emmanuel, Zhang, Chen, Gao, Feng, Zheng, Siyuan, Ding, Jie, Wu, Shaofang, Nguyen, Nghi, Clifford, Stephan C, Wen, Patrick Y, Ligon, Keith L, Yung, W K Alfred, Koul, Dimpy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5101
container_issue 19
container_start_page 5088
container_title Cancer research (Chicago, Ill.)
container_volume 79
creator Li, Xiaolong
Martinez-Ledesma, Emmanuel
Zhang, Chen
Gao, Feng
Zheng, Siyuan
Ding, Jie
Wu, Shaofang
Nguyen, Nghi
Clifford, Stephan C
Wen, Patrick Y
Ligon, Keith L
Yung, W K Alfred
Koul, Dimpy
description PI3K-targeting therapy represents one of the most sought-after therapies for glioblastoma (GBM). Several small-molecule inhibitors have been evaluated in clinical trials, however, the emergence of resistance limits treatment potential. Here, we generated a patient-derived glioma sphere-forming cell (GSC) xenograft model resistant to the PI3K-specific inhibitor BKM-120. Integrated RNA sequencing and high-throughput drug screening revealed that the Aurora A kinase (Aurora A)/Polo-like kinase 1 (PLK1)/cyclin-dependent kinase 1 (CDK1) signaling pathway was the main driver of PI3K inhibitor resistance in the resistant xenografts. Aurora kinase was upregulated and pCDK1 was downregulated in resistant tumors from both xenografts and tumor tissues from patients treated with the PI3K inhibitor. Mechanistically, the tyrosine kinase receptor Tie2 physically interacted with FGFR1, promoting STAT3 phosphorylation and binding to the promoter, which increased Aurora A expression in resistant GSCs. Concurrent inhibition of Aurora A and PI3K signaling overcame PI3K inhibitor-induced resistance. This study offers a proof of concept to target PI3K and the collateral-activated pathway to improve GBM therapy. SIGNIFICANCE: These findings provide novel insights into the mechanisms of PI3K inhibitor resistance in glioblastoma.
doi_str_mv 10.1158/0008-5472.CAN-19-0325
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2275298977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2275298977</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-16065ed5ada460fa45a03113196527daed8dd8e4d0036d6dd82f91e80df428783</originalsourceid><addsrcrecordid>eNo9kE2P0zAQhi0EYrsLPwHkI5dsPf6Kc4zKtlStYLXsni03nhSjNCm2g7QXfjuJ9uM078y874z0EPIJ2DWAMkvGmCmULPn1qv5eQFUwwdUbsgAlTFFKqd6Sxavnglym9HtqFTD1nlwIkKCN1Avy7z4gL9ab9R3QbZ8xuiaHoZ-0HxtMtPbunMNfpLdbsZumv8Ih5CHSO0whZdc3SA-P9OEc8Th2Lof-SOsxDtHRenm738Fy9XUH9Gc49q6bl6Gnmy4Mh86lPJzcB_KudV3Cj8_1ijysb-5X34r9j812Ve-LRiidC9BMK_TKeSc1a51UjgkAAZVWvPQOvfHeoPSMCe31pHlbARrmW8lNacQV-fJ09xyHPyOmbE8hNdh1rsdhTJbzUvHKVGU5WdWTtYlDShFbe47h5OKjBWZn9HbGamesdkJvobIz-in3-fnFeDihf029sBb_Adehfgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2275298977</pqid></control><display><type>article</type><title>Tie2-FGFR1 Interaction Induces Adaptive PI3K Inhibitor Resistance by Upregulating Aurora A/PLK1/CDK1 Signaling in Glioblastoma</title><source>MEDLINE</source><source>American Association for Cancer Research</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Li, Xiaolong ; Martinez-Ledesma, Emmanuel ; Zhang, Chen ; Gao, Feng ; Zheng, Siyuan ; Ding, Jie ; Wu, Shaofang ; Nguyen, Nghi ; Clifford, Stephan C ; Wen, Patrick Y ; Ligon, Keith L ; Yung, W K Alfred ; Koul, Dimpy</creator><creatorcontrib>Li, Xiaolong ; Martinez-Ledesma, Emmanuel ; Zhang, Chen ; Gao, Feng ; Zheng, Siyuan ; Ding, Jie ; Wu, Shaofang ; Nguyen, Nghi ; Clifford, Stephan C ; Wen, Patrick Y ; Ligon, Keith L ; Yung, W K Alfred ; Koul, Dimpy</creatorcontrib><description>PI3K-targeting therapy represents one of the most sought-after therapies for glioblastoma (GBM). Several small-molecule inhibitors have been evaluated in clinical trials, however, the emergence of resistance limits treatment potential. Here, we generated a patient-derived glioma sphere-forming cell (GSC) xenograft model resistant to the PI3K-specific inhibitor BKM-120. Integrated RNA sequencing and high-throughput drug screening revealed that the Aurora A kinase (Aurora A)/Polo-like kinase 1 (PLK1)/cyclin-dependent kinase 1 (CDK1) signaling pathway was the main driver of PI3K inhibitor resistance in the resistant xenografts. Aurora kinase was upregulated and pCDK1 was downregulated in resistant tumors from both xenografts and tumor tissues from patients treated with the PI3K inhibitor. Mechanistically, the tyrosine kinase receptor Tie2 physically interacted with FGFR1, promoting STAT3 phosphorylation and binding to the promoter, which increased Aurora A expression in resistant GSCs. Concurrent inhibition of Aurora A and PI3K signaling overcame PI3K inhibitor-induced resistance. This study offers a proof of concept to target PI3K and the collateral-activated pathway to improve GBM therapy. SIGNIFICANCE: These findings provide novel insights into the mechanisms of PI3K inhibitor resistance in glioblastoma.</description><identifier>ISSN: 0008-5472</identifier><identifier>EISSN: 1538-7445</identifier><identifier>DOI: 10.1158/0008-5472.CAN-19-0325</identifier><identifier>PMID: 31416846</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; Aurora Kinase A - metabolism ; CDC2 Protein Kinase - metabolism ; Cell Cycle Proteins - metabolism ; Drug Resistance, Neoplasm - physiology ; Glioblastoma - pathology ; Heterografts ; Humans ; Male ; Mice ; Mice, Nude ; Phosphatidylinositol 3-Kinases - metabolism ; Polo-Like Kinase 1 ; Protein Kinase Inhibitors - pharmacology ; Protein Serine-Threonine Kinases - metabolism ; Proto-Oncogene Proteins - metabolism ; Receptor, Fibroblast Growth Factor, Type 1 - metabolism ; Receptor, TIE-2 - metabolism ; Signal Transduction - physiology ; Up-Regulation</subject><ispartof>Cancer research (Chicago, Ill.), 2019-10, Vol.79 (19), p.5088-5101</ispartof><rights>2019 American Association for Cancer Research.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-16065ed5ada460fa45a03113196527daed8dd8e4d0036d6dd82f91e80df428783</citedby><cites>FETCH-LOGICAL-c356t-16065ed5ada460fa45a03113196527daed8dd8e4d0036d6dd82f91e80df428783</cites><orcidid>0000-0002-1031-9424</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3343,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31416846$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Xiaolong</creatorcontrib><creatorcontrib>Martinez-Ledesma, Emmanuel</creatorcontrib><creatorcontrib>Zhang, Chen</creatorcontrib><creatorcontrib>Gao, Feng</creatorcontrib><creatorcontrib>Zheng, Siyuan</creatorcontrib><creatorcontrib>Ding, Jie</creatorcontrib><creatorcontrib>Wu, Shaofang</creatorcontrib><creatorcontrib>Nguyen, Nghi</creatorcontrib><creatorcontrib>Clifford, Stephan C</creatorcontrib><creatorcontrib>Wen, Patrick Y</creatorcontrib><creatorcontrib>Ligon, Keith L</creatorcontrib><creatorcontrib>Yung, W K Alfred</creatorcontrib><creatorcontrib>Koul, Dimpy</creatorcontrib><title>Tie2-FGFR1 Interaction Induces Adaptive PI3K Inhibitor Resistance by Upregulating Aurora A/PLK1/CDK1 Signaling in Glioblastoma</title><title>Cancer research (Chicago, Ill.)</title><addtitle>Cancer Res</addtitle><description>PI3K-targeting therapy represents one of the most sought-after therapies for glioblastoma (GBM). Several small-molecule inhibitors have been evaluated in clinical trials, however, the emergence of resistance limits treatment potential. Here, we generated a patient-derived glioma sphere-forming cell (GSC) xenograft model resistant to the PI3K-specific inhibitor BKM-120. Integrated RNA sequencing and high-throughput drug screening revealed that the Aurora A kinase (Aurora A)/Polo-like kinase 1 (PLK1)/cyclin-dependent kinase 1 (CDK1) signaling pathway was the main driver of PI3K inhibitor resistance in the resistant xenografts. Aurora kinase was upregulated and pCDK1 was downregulated in resistant tumors from both xenografts and tumor tissues from patients treated with the PI3K inhibitor. Mechanistically, the tyrosine kinase receptor Tie2 physically interacted with FGFR1, promoting STAT3 phosphorylation and binding to the promoter, which increased Aurora A expression in resistant GSCs. Concurrent inhibition of Aurora A and PI3K signaling overcame PI3K inhibitor-induced resistance. This study offers a proof of concept to target PI3K and the collateral-activated pathway to improve GBM therapy. SIGNIFICANCE: These findings provide novel insights into the mechanisms of PI3K inhibitor resistance in glioblastoma.</description><subject>Animals</subject><subject>Aurora Kinase A - metabolism</subject><subject>CDC2 Protein Kinase - metabolism</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Drug Resistance, Neoplasm - physiology</subject><subject>Glioblastoma - pathology</subject><subject>Heterografts</subject><subject>Humans</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>Polo-Like Kinase 1</subject><subject>Protein Kinase Inhibitors - pharmacology</subject><subject>Protein Serine-Threonine Kinases - metabolism</subject><subject>Proto-Oncogene Proteins - metabolism</subject><subject>Receptor, Fibroblast Growth Factor, Type 1 - metabolism</subject><subject>Receptor, TIE-2 - metabolism</subject><subject>Signal Transduction - physiology</subject><subject>Up-Regulation</subject><issn>0008-5472</issn><issn>1538-7445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kE2P0zAQhi0EYrsLPwHkI5dsPf6Kc4zKtlStYLXsni03nhSjNCm2g7QXfjuJ9uM078y874z0EPIJ2DWAMkvGmCmULPn1qv5eQFUwwdUbsgAlTFFKqd6Sxavnglym9HtqFTD1nlwIkKCN1Avy7z4gL9ab9R3QbZ8xuiaHoZ-0HxtMtPbunMNfpLdbsZumv8Ih5CHSO0whZdc3SA-P9OEc8Th2Lof-SOsxDtHRenm738Fy9XUH9Gc49q6bl6Gnmy4Mh86lPJzcB_KudV3Cj8_1ijysb-5X34r9j812Ve-LRiidC9BMK_TKeSc1a51UjgkAAZVWvPQOvfHeoPSMCe31pHlbARrmW8lNacQV-fJ09xyHPyOmbE8hNdh1rsdhTJbzUvHKVGU5WdWTtYlDShFbe47h5OKjBWZn9HbGamesdkJvobIz-in3-fnFeDihf029sBb_Adehfgg</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Li, Xiaolong</creator><creator>Martinez-Ledesma, Emmanuel</creator><creator>Zhang, Chen</creator><creator>Gao, Feng</creator><creator>Zheng, Siyuan</creator><creator>Ding, Jie</creator><creator>Wu, Shaofang</creator><creator>Nguyen, Nghi</creator><creator>Clifford, Stephan C</creator><creator>Wen, Patrick Y</creator><creator>Ligon, Keith L</creator><creator>Yung, W K Alfred</creator><creator>Koul, Dimpy</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1031-9424</orcidid></search><sort><creationdate>20191001</creationdate><title>Tie2-FGFR1 Interaction Induces Adaptive PI3K Inhibitor Resistance by Upregulating Aurora A/PLK1/CDK1 Signaling in Glioblastoma</title><author>Li, Xiaolong ; Martinez-Ledesma, Emmanuel ; Zhang, Chen ; Gao, Feng ; Zheng, Siyuan ; Ding, Jie ; Wu, Shaofang ; Nguyen, Nghi ; Clifford, Stephan C ; Wen, Patrick Y ; Ligon, Keith L ; Yung, W K Alfred ; Koul, Dimpy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-16065ed5ada460fa45a03113196527daed8dd8e4d0036d6dd82f91e80df428783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Aurora Kinase A - metabolism</topic><topic>CDC2 Protein Kinase - metabolism</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Drug Resistance, Neoplasm - physiology</topic><topic>Glioblastoma - pathology</topic><topic>Heterografts</topic><topic>Humans</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>Polo-Like Kinase 1</topic><topic>Protein Kinase Inhibitors - pharmacology</topic><topic>Protein Serine-Threonine Kinases - metabolism</topic><topic>Proto-Oncogene Proteins - metabolism</topic><topic>Receptor, Fibroblast Growth Factor, Type 1 - metabolism</topic><topic>Receptor, TIE-2 - metabolism</topic><topic>Signal Transduction - physiology</topic><topic>Up-Regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xiaolong</creatorcontrib><creatorcontrib>Martinez-Ledesma, Emmanuel</creatorcontrib><creatorcontrib>Zhang, Chen</creatorcontrib><creatorcontrib>Gao, Feng</creatorcontrib><creatorcontrib>Zheng, Siyuan</creatorcontrib><creatorcontrib>Ding, Jie</creatorcontrib><creatorcontrib>Wu, Shaofang</creatorcontrib><creatorcontrib>Nguyen, Nghi</creatorcontrib><creatorcontrib>Clifford, Stephan C</creatorcontrib><creatorcontrib>Wen, Patrick Y</creatorcontrib><creatorcontrib>Ligon, Keith L</creatorcontrib><creatorcontrib>Yung, W K Alfred</creatorcontrib><creatorcontrib>Koul, Dimpy</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cancer research (Chicago, Ill.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xiaolong</au><au>Martinez-Ledesma, Emmanuel</au><au>Zhang, Chen</au><au>Gao, Feng</au><au>Zheng, Siyuan</au><au>Ding, Jie</au><au>Wu, Shaofang</au><au>Nguyen, Nghi</au><au>Clifford, Stephan C</au><au>Wen, Patrick Y</au><au>Ligon, Keith L</au><au>Yung, W K Alfred</au><au>Koul, Dimpy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tie2-FGFR1 Interaction Induces Adaptive PI3K Inhibitor Resistance by Upregulating Aurora A/PLK1/CDK1 Signaling in Glioblastoma</atitle><jtitle>Cancer research (Chicago, Ill.)</jtitle><addtitle>Cancer Res</addtitle><date>2019-10-01</date><risdate>2019</risdate><volume>79</volume><issue>19</issue><spage>5088</spage><epage>5101</epage><pages>5088-5101</pages><issn>0008-5472</issn><eissn>1538-7445</eissn><abstract>PI3K-targeting therapy represents one of the most sought-after therapies for glioblastoma (GBM). Several small-molecule inhibitors have been evaluated in clinical trials, however, the emergence of resistance limits treatment potential. Here, we generated a patient-derived glioma sphere-forming cell (GSC) xenograft model resistant to the PI3K-specific inhibitor BKM-120. Integrated RNA sequencing and high-throughput drug screening revealed that the Aurora A kinase (Aurora A)/Polo-like kinase 1 (PLK1)/cyclin-dependent kinase 1 (CDK1) signaling pathway was the main driver of PI3K inhibitor resistance in the resistant xenografts. Aurora kinase was upregulated and pCDK1 was downregulated in resistant tumors from both xenografts and tumor tissues from patients treated with the PI3K inhibitor. Mechanistically, the tyrosine kinase receptor Tie2 physically interacted with FGFR1, promoting STAT3 phosphorylation and binding to the promoter, which increased Aurora A expression in resistant GSCs. Concurrent inhibition of Aurora A and PI3K signaling overcame PI3K inhibitor-induced resistance. This study offers a proof of concept to target PI3K and the collateral-activated pathway to improve GBM therapy. SIGNIFICANCE: These findings provide novel insights into the mechanisms of PI3K inhibitor resistance in glioblastoma.</abstract><cop>United States</cop><pmid>31416846</pmid><doi>10.1158/0008-5472.CAN-19-0325</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1031-9424</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0008-5472
ispartof Cancer research (Chicago, Ill.), 2019-10, Vol.79 (19), p.5088-5101
issn 0008-5472
1538-7445
language eng
recordid cdi_proquest_miscellaneous_2275298977
source MEDLINE; American Association for Cancer Research; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Animals
Aurora Kinase A - metabolism
CDC2 Protein Kinase - metabolism
Cell Cycle Proteins - metabolism
Drug Resistance, Neoplasm - physiology
Glioblastoma - pathology
Heterografts
Humans
Male
Mice
Mice, Nude
Phosphatidylinositol 3-Kinases - metabolism
Polo-Like Kinase 1
Protein Kinase Inhibitors - pharmacology
Protein Serine-Threonine Kinases - metabolism
Proto-Oncogene Proteins - metabolism
Receptor, Fibroblast Growth Factor, Type 1 - metabolism
Receptor, TIE-2 - metabolism
Signal Transduction - physiology
Up-Regulation
title Tie2-FGFR1 Interaction Induces Adaptive PI3K Inhibitor Resistance by Upregulating Aurora A/PLK1/CDK1 Signaling in Glioblastoma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A48%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tie2-FGFR1%20Interaction%20Induces%20Adaptive%20PI3K%20Inhibitor%20Resistance%20by%20Upregulating%20Aurora%20A/PLK1/CDK1%20Signaling%20in%20Glioblastoma&rft.jtitle=Cancer%20research%20(Chicago,%20Ill.)&rft.au=Li,%20Xiaolong&rft.date=2019-10-01&rft.volume=79&rft.issue=19&rft.spage=5088&rft.epage=5101&rft.pages=5088-5101&rft.issn=0008-5472&rft.eissn=1538-7445&rft_id=info:doi/10.1158/0008-5472.CAN-19-0325&rft_dat=%3Cproquest_cross%3E2275298977%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2275298977&rft_id=info:pmid/31416846&rfr_iscdi=true