High Thermal Boundary Conductance across Bonded Heterogeneous GaN–SiC Interfaces

High-power GaN-based electronics are limited by high channel temperatures induced by self-heating, which degrades device performance and reliability. Increasing the thermal boundary conductance (TBC) between GaN and SiC will aid in the heat dissipation of GaN-on-SiC devices by taking advantage of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2019-09, Vol.11 (36), p.33428-33434
Hauptverfasser: Mu, Fengwen, Cheng, Zhe, Shi, Jingjing, Shin, Seongbin, Xu, Bin, Shiomi, Junichiro, Graham, Samuel, Suga, Tadatomo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 33434
container_issue 36
container_start_page 33428
container_title ACS applied materials & interfaces
container_volume 11
creator Mu, Fengwen
Cheng, Zhe
Shi, Jingjing
Shin, Seongbin
Xu, Bin
Shiomi, Junichiro
Graham, Samuel
Suga, Tadatomo
description High-power GaN-based electronics are limited by high channel temperatures induced by self-heating, which degrades device performance and reliability. Increasing the thermal boundary conductance (TBC) between GaN and SiC will aid in the heat dissipation of GaN-on-SiC devices by taking advantage of the high thermal conductivity of SiC substrates. For the typical growth method, there are issues concerning the transition layer at the interface and low-quality GaN adjacent to the interface, which impedes heat flow. In this work, a room-temperature bonding method is used to bond high-quality GaN to SiC directly, which allows for the direct integration of high-quality GaN with SiC to create a high TBC interface. Time-domain thermoreflectance is used to measure the GaN thermal conductivity and GaN–SiC TBC. The measured GaN thermal conductivity is larger than that of grown GaN-on-SiC by molecular beam epitaxy. High TBC is observed for the bonded GaN–SiC interfaces, especially for the annealed interface (∼230 MW m–2 K–1, close to the highest value ever reported). Thus, this work provides the benefit of both a high TBC and higher GaN thermal conductivity, which will impact the GaN-device integration with substrates in which thermal dissipation always plays an important role. Additionally, simultaneous thermal and structural characterizations of heterogeneous bonded interfaces are performed to understand the structure–thermal property relation across this new type of interface.
doi_str_mv 10.1021/acsami.9b10106
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2273204646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2273204646</sourcerecordid><originalsourceid>FETCH-LOGICAL-a396t-95a6fc1f05c21948a1df1c49228d1b4298e61ee41971e985bdf1d40638bf764c3</originalsourceid><addsrcrecordid>eNp1kL9OwzAQxi0EoqWwMqKMCCnFdhw3HiGCtlIFEpTZcuxLmyp_ip0MbLwDb8iTYJrSjelOd7_7dN-H0CXBY4IpuVXaqaoYi4xggvkRGhLBWJjQmB4fesYG6My5DcY8ojg-RYOIMJxEhA_Ry6xYrYPlGmylyuC-6Wqj7EeQNrXpdKtqDYHStnHO72oDJphBC7ZZQQ1N54Kpevr-_Hot0mBe-3muNLhzdJKr0sHFvo7Q2-PDMp2Fi-fpPL1bhCoSvA1FrHiuSY5jTf2jiSImJ5oJShNDMkZFApwAMCImBEQSZ35tmLeQZPmEMx2N0HWvu7XNeweulVXhNJSl2v0mKZ14u4wz7tFxj-6sWMjl1haVNyoJlr85yj5Huc_RH1zttbusAnPA_4LzwE0P-EO5aTpbe6v_qf0A3kp9Ww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2273204646</pqid></control><display><type>article</type><title>High Thermal Boundary Conductance across Bonded Heterogeneous GaN–SiC Interfaces</title><source>ACS Publications</source><creator>Mu, Fengwen ; Cheng, Zhe ; Shi, Jingjing ; Shin, Seongbin ; Xu, Bin ; Shiomi, Junichiro ; Graham, Samuel ; Suga, Tadatomo</creator><creatorcontrib>Mu, Fengwen ; Cheng, Zhe ; Shi, Jingjing ; Shin, Seongbin ; Xu, Bin ; Shiomi, Junichiro ; Graham, Samuel ; Suga, Tadatomo</creatorcontrib><description>High-power GaN-based electronics are limited by high channel temperatures induced by self-heating, which degrades device performance and reliability. Increasing the thermal boundary conductance (TBC) between GaN and SiC will aid in the heat dissipation of GaN-on-SiC devices by taking advantage of the high thermal conductivity of SiC substrates. For the typical growth method, there are issues concerning the transition layer at the interface and low-quality GaN adjacent to the interface, which impedes heat flow. In this work, a room-temperature bonding method is used to bond high-quality GaN to SiC directly, which allows for the direct integration of high-quality GaN with SiC to create a high TBC interface. Time-domain thermoreflectance is used to measure the GaN thermal conductivity and GaN–SiC TBC. The measured GaN thermal conductivity is larger than that of grown GaN-on-SiC by molecular beam epitaxy. High TBC is observed for the bonded GaN–SiC interfaces, especially for the annealed interface (∼230 MW m–2 K–1, close to the highest value ever reported). Thus, this work provides the benefit of both a high TBC and higher GaN thermal conductivity, which will impact the GaN-device integration with substrates in which thermal dissipation always plays an important role. Additionally, simultaneous thermal and structural characterizations of heterogeneous bonded interfaces are performed to understand the structure–thermal property relation across this new type of interface.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.9b10106</identifier><identifier>PMID: 31408316</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2019-09, Vol.11 (36), p.33428-33434</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a396t-95a6fc1f05c21948a1df1c49228d1b4298e61ee41971e985bdf1d40638bf764c3</citedby><cites>FETCH-LOGICAL-a396t-95a6fc1f05c21948a1df1c49228d1b4298e61ee41971e985bdf1d40638bf764c3</cites><orcidid>0000-0002-1299-1636 ; 0000-0001-7827-2979 ; 0000-0001-7396-9347 ; 0000-0002-3552-4555</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.9b10106$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.9b10106$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31408316$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mu, Fengwen</creatorcontrib><creatorcontrib>Cheng, Zhe</creatorcontrib><creatorcontrib>Shi, Jingjing</creatorcontrib><creatorcontrib>Shin, Seongbin</creatorcontrib><creatorcontrib>Xu, Bin</creatorcontrib><creatorcontrib>Shiomi, Junichiro</creatorcontrib><creatorcontrib>Graham, Samuel</creatorcontrib><creatorcontrib>Suga, Tadatomo</creatorcontrib><title>High Thermal Boundary Conductance across Bonded Heterogeneous GaN–SiC Interfaces</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>High-power GaN-based electronics are limited by high channel temperatures induced by self-heating, which degrades device performance and reliability. Increasing the thermal boundary conductance (TBC) between GaN and SiC will aid in the heat dissipation of GaN-on-SiC devices by taking advantage of the high thermal conductivity of SiC substrates. For the typical growth method, there are issues concerning the transition layer at the interface and low-quality GaN adjacent to the interface, which impedes heat flow. In this work, a room-temperature bonding method is used to bond high-quality GaN to SiC directly, which allows for the direct integration of high-quality GaN with SiC to create a high TBC interface. Time-domain thermoreflectance is used to measure the GaN thermal conductivity and GaN–SiC TBC. The measured GaN thermal conductivity is larger than that of grown GaN-on-SiC by molecular beam epitaxy. High TBC is observed for the bonded GaN–SiC interfaces, especially for the annealed interface (∼230 MW m–2 K–1, close to the highest value ever reported). Thus, this work provides the benefit of both a high TBC and higher GaN thermal conductivity, which will impact the GaN-device integration with substrates in which thermal dissipation always plays an important role. Additionally, simultaneous thermal and structural characterizations of heterogeneous bonded interfaces are performed to understand the structure–thermal property relation across this new type of interface.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kL9OwzAQxi0EoqWwMqKMCCnFdhw3HiGCtlIFEpTZcuxLmyp_ip0MbLwDb8iTYJrSjelOd7_7dN-H0CXBY4IpuVXaqaoYi4xggvkRGhLBWJjQmB4fesYG6My5DcY8ojg-RYOIMJxEhA_Ry6xYrYPlGmylyuC-6Wqj7EeQNrXpdKtqDYHStnHO72oDJphBC7ZZQQ1N54Kpevr-_Hot0mBe-3muNLhzdJKr0sHFvo7Q2-PDMp2Fi-fpPL1bhCoSvA1FrHiuSY5jTf2jiSImJ5oJShNDMkZFApwAMCImBEQSZ35tmLeQZPmEMx2N0HWvu7XNeweulVXhNJSl2v0mKZ14u4wz7tFxj-6sWMjl1haVNyoJlr85yj5Huc_RH1zttbusAnPA_4LzwE0P-EO5aTpbe6v_qf0A3kp9Ww</recordid><startdate>20190911</startdate><enddate>20190911</enddate><creator>Mu, Fengwen</creator><creator>Cheng, Zhe</creator><creator>Shi, Jingjing</creator><creator>Shin, Seongbin</creator><creator>Xu, Bin</creator><creator>Shiomi, Junichiro</creator><creator>Graham, Samuel</creator><creator>Suga, Tadatomo</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1299-1636</orcidid><orcidid>https://orcid.org/0000-0001-7827-2979</orcidid><orcidid>https://orcid.org/0000-0001-7396-9347</orcidid><orcidid>https://orcid.org/0000-0002-3552-4555</orcidid></search><sort><creationdate>20190911</creationdate><title>High Thermal Boundary Conductance across Bonded Heterogeneous GaN–SiC Interfaces</title><author>Mu, Fengwen ; Cheng, Zhe ; Shi, Jingjing ; Shin, Seongbin ; Xu, Bin ; Shiomi, Junichiro ; Graham, Samuel ; Suga, Tadatomo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a396t-95a6fc1f05c21948a1df1c49228d1b4298e61ee41971e985bdf1d40638bf764c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mu, Fengwen</creatorcontrib><creatorcontrib>Cheng, Zhe</creatorcontrib><creatorcontrib>Shi, Jingjing</creatorcontrib><creatorcontrib>Shin, Seongbin</creatorcontrib><creatorcontrib>Xu, Bin</creatorcontrib><creatorcontrib>Shiomi, Junichiro</creatorcontrib><creatorcontrib>Graham, Samuel</creatorcontrib><creatorcontrib>Suga, Tadatomo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mu, Fengwen</au><au>Cheng, Zhe</au><au>Shi, Jingjing</au><au>Shin, Seongbin</au><au>Xu, Bin</au><au>Shiomi, Junichiro</au><au>Graham, Samuel</au><au>Suga, Tadatomo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Thermal Boundary Conductance across Bonded Heterogeneous GaN–SiC Interfaces</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2019-09-11</date><risdate>2019</risdate><volume>11</volume><issue>36</issue><spage>33428</spage><epage>33434</epage><pages>33428-33434</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>High-power GaN-based electronics are limited by high channel temperatures induced by self-heating, which degrades device performance and reliability. Increasing the thermal boundary conductance (TBC) between GaN and SiC will aid in the heat dissipation of GaN-on-SiC devices by taking advantage of the high thermal conductivity of SiC substrates. For the typical growth method, there are issues concerning the transition layer at the interface and low-quality GaN adjacent to the interface, which impedes heat flow. In this work, a room-temperature bonding method is used to bond high-quality GaN to SiC directly, which allows for the direct integration of high-quality GaN with SiC to create a high TBC interface. Time-domain thermoreflectance is used to measure the GaN thermal conductivity and GaN–SiC TBC. The measured GaN thermal conductivity is larger than that of grown GaN-on-SiC by molecular beam epitaxy. High TBC is observed for the bonded GaN–SiC interfaces, especially for the annealed interface (∼230 MW m–2 K–1, close to the highest value ever reported). Thus, this work provides the benefit of both a high TBC and higher GaN thermal conductivity, which will impact the GaN-device integration with substrates in which thermal dissipation always plays an important role. Additionally, simultaneous thermal and structural characterizations of heterogeneous bonded interfaces are performed to understand the structure–thermal property relation across this new type of interface.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31408316</pmid><doi>10.1021/acsami.9b10106</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1299-1636</orcidid><orcidid>https://orcid.org/0000-0001-7827-2979</orcidid><orcidid>https://orcid.org/0000-0001-7396-9347</orcidid><orcidid>https://orcid.org/0000-0002-3552-4555</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2019-09, Vol.11 (36), p.33428-33434
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2273204646
source ACS Publications
title High Thermal Boundary Conductance across Bonded Heterogeneous GaN–SiC Interfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A52%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Thermal%20Boundary%20Conductance%20across%20Bonded%20Heterogeneous%20GaN%E2%80%93SiC%20Interfaces&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Mu,%20Fengwen&rft.date=2019-09-11&rft.volume=11&rft.issue=36&rft.spage=33428&rft.epage=33434&rft.pages=33428-33434&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.9b10106&rft_dat=%3Cproquest_cross%3E2273204646%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2273204646&rft_id=info:pmid/31408316&rfr_iscdi=true