Assessment of angiogenesis in rabbit orthotropic liver tumors using three-dimensional dynamic contrast-enhanced ultrasound compared with two-dimensional DCE-US

Objectives To evaluate quantitative three-dimensional (3D) dynamic contrast-enhanced ultrasound (DCE-US) in the assessment of tumor angiogenesis using an orthotropic liver tumor model. Methods Nine New Zealand white rabbits with liver orthotropic VX2 tumors were established and imaged by two-dimensi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Japanese journal of radiology 2019-10, Vol.37 (10), p.701-709
Hauptverfasser: Zheng, Qiao, Zhang, Jian-chao, Wang, Zhu, Ruan, Si-Min, Li, Wei, Pan, Fu-Shun, Chen, Li-Da, Zhang, Yu-Chen, Wu, Wen-Xin, Xie, Xiao-Yan, Lu, Ming-De, Shan, Quan-Yuan, Wang, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 709
container_issue 10
container_start_page 701
container_title Japanese journal of radiology
container_volume 37
creator Zheng, Qiao
Zhang, Jian-chao
Wang, Zhu
Ruan, Si-Min
Li, Wei
Pan, Fu-Shun
Chen, Li-Da
Zhang, Yu-Chen
Wu, Wen-Xin
Xie, Xiao-Yan
Lu, Ming-De
Shan, Quan-Yuan
Wang, Wei
description Objectives To evaluate quantitative three-dimensional (3D) dynamic contrast-enhanced ultrasound (DCE-US) in the assessment of tumor angiogenesis using an orthotropic liver tumor model. Methods Nine New Zealand white rabbits with liver orthotropic VX2 tumors were established and imaged by two-dimensional (2D) and 3D DCE-US after SonoVue ® bolus injections. The intraclass correlation coefficients of perfusion parameters, including peak intensity (PI), mean transit time, time to peak, and area under the curve, were calculated based on time-intensity curve. The percentage area of microvascular (PAMV) and the expression of vascular endothelial growth factor (VEGF) were both evaluated by immunohistochemical analysis and weighted by the tumor activity area ratio. Correlations between quantitative and histologic parameters were analyzed. Results The reproducibility of 3D DCE-US quantitative parameters was excellent (ICC 0.91–0.99); but only PI showed high reproducibility (ICC 0.97) in 2D. None of the parameters of quantitative 2D DCE-US were significantly correlated with weighted PAMV or VEGF. For 3D DCE-US, there was a positive correlation between PI and weighted PAMV ( r  = 0.74, P  = 0.04) as well as VEGF ( r  = 0.79, P  = 0.02). Conclusion Quantitative parameters of 3D DCE-US show feasibility, higher reproducibility and accuracy for the assessment of tumor angiogenesis using an orthotropic liver tumor model compared with 2D DCE-US.
doi_str_mv 10.1007/s11604-019-00861-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2272222222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2270822779</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-cab46234c06c083e289b9f0f30beb542691c98c3ee02933f2e5aca23812e88543</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS0EoqXwAiyQJTZsDP6bxFlWQ_mRKrGASuwsx7mZcZXYg6_Tqn0ZXhV3phTBAi_sq3u-e2z5EPJS8LeC8_YdCtFwzbjoGOemEez2ETkWpmmZ4Ob744e6FUfkGeIl541WWj8lR0poLlopj8nPU0RAnCEWmkbq4iakDUTAgDREml3fh6rksk0lp13wdApXkGlZ5pSRLhjihpZtBmBDqC4YUnQTHW6imyvsUyzZYWEQty56GOgy3TXSEocqzjuXa-86lC0t1-kvi_frM3bx9Tl5MroJ4cX9eUIuPpx9W39i518-fl6fnjOv2lVh3vW6kUp73nhuFEjT9d3IR8V76FdaNp3wnfEKgMtOqVHCynknlRESjFlpdULeHHx3Of1YAIudA3qYJhchLWilrN-1XxV9_Q96mZZcn7ynuKlb21VKHiifE2KG0e5ymF2-sYLbu_jsIT5b47P7-OxtHXp1b730MwwPI7_zqoA6AFiluIH85-7_2P4ClgepdA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2270822779</pqid></control><display><type>article</type><title>Assessment of angiogenesis in rabbit orthotropic liver tumors using three-dimensional dynamic contrast-enhanced ultrasound compared with two-dimensional DCE-US</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Zheng, Qiao ; Zhang, Jian-chao ; Wang, Zhu ; Ruan, Si-Min ; Li, Wei ; Pan, Fu-Shun ; Chen, Li-Da ; Zhang, Yu-Chen ; Wu, Wen-Xin ; Xie, Xiao-Yan ; Lu, Ming-De ; Shan, Quan-Yuan ; Wang, Wei</creator><creatorcontrib>Zheng, Qiao ; Zhang, Jian-chao ; Wang, Zhu ; Ruan, Si-Min ; Li, Wei ; Pan, Fu-Shun ; Chen, Li-Da ; Zhang, Yu-Chen ; Wu, Wen-Xin ; Xie, Xiao-Yan ; Lu, Ming-De ; Shan, Quan-Yuan ; Wang, Wei</creatorcontrib><description>Objectives To evaluate quantitative three-dimensional (3D) dynamic contrast-enhanced ultrasound (DCE-US) in the assessment of tumor angiogenesis using an orthotropic liver tumor model. Methods Nine New Zealand white rabbits with liver orthotropic VX2 tumors were established and imaged by two-dimensional (2D) and 3D DCE-US after SonoVue ® bolus injections. The intraclass correlation coefficients of perfusion parameters, including peak intensity (PI), mean transit time, time to peak, and area under the curve, were calculated based on time-intensity curve. The percentage area of microvascular (PAMV) and the expression of vascular endothelial growth factor (VEGF) were both evaluated by immunohistochemical analysis and weighted by the tumor activity area ratio. Correlations between quantitative and histologic parameters were analyzed. Results The reproducibility of 3D DCE-US quantitative parameters was excellent (ICC 0.91–0.99); but only PI showed high reproducibility (ICC 0.97) in 2D. None of the parameters of quantitative 2D DCE-US were significantly correlated with weighted PAMV or VEGF. For 3D DCE-US, there was a positive correlation between PI and weighted PAMV ( r  = 0.74, P  = 0.04) as well as VEGF ( r  = 0.79, P  = 0.02). Conclusion Quantitative parameters of 3D DCE-US show feasibility, higher reproducibility and accuracy for the assessment of tumor angiogenesis using an orthotropic liver tumor model compared with 2D DCE-US.</description><identifier>ISSN: 1867-1071</identifier><identifier>EISSN: 1867-108X</identifier><identifier>DOI: 10.1007/s11604-019-00861-z</identifier><identifier>PMID: 31401722</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Angiogenesis ; Animals ; Contrast Media ; Correlation coefficients ; Disease Models, Animal ; Drug delivery systems ; Feasibility studies ; Growth factors ; Humans ; Image Enhancement - methods ; Imaging ; Imaging, Three-Dimensional - methods ; Liver ; Liver - diagnostic imaging ; Liver - pathology ; Liver cancer ; Liver Neoplasms - diagnostic imaging ; Liver Neoplasms - pathology ; Mathematical models ; Medicine ; Medicine &amp; Public Health ; Microvasculature ; Neovascularization, Pathologic - diagnostic imaging ; Neovascularization, Pathologic - pathology ; Nuclear Medicine ; Original Article ; Parameters ; Perfusion ; Rabbits ; Radiology ; Radiotherapy ; Reproducibility ; Reproducibility of Results ; Transit time ; Tumors ; Two dimensional models ; Ultrasonic imaging ; Ultrasonography - methods ; Ultrasound ; Vascular endothelial growth factor</subject><ispartof>Japanese journal of radiology, 2019-10, Vol.37 (10), p.701-709</ispartof><rights>Japan Radiological Society 2019</rights><rights>Japanese Journal of Radiology is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-cab46234c06c083e289b9f0f30beb542691c98c3ee02933f2e5aca23812e88543</citedby><cites>FETCH-LOGICAL-c375t-cab46234c06c083e289b9f0f30beb542691c98c3ee02933f2e5aca23812e88543</cites><orcidid>0000-0002-9485-583X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11604-019-00861-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11604-019-00861-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31401722$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, Qiao</creatorcontrib><creatorcontrib>Zhang, Jian-chao</creatorcontrib><creatorcontrib>Wang, Zhu</creatorcontrib><creatorcontrib>Ruan, Si-Min</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Pan, Fu-Shun</creatorcontrib><creatorcontrib>Chen, Li-Da</creatorcontrib><creatorcontrib>Zhang, Yu-Chen</creatorcontrib><creatorcontrib>Wu, Wen-Xin</creatorcontrib><creatorcontrib>Xie, Xiao-Yan</creatorcontrib><creatorcontrib>Lu, Ming-De</creatorcontrib><creatorcontrib>Shan, Quan-Yuan</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><title>Assessment of angiogenesis in rabbit orthotropic liver tumors using three-dimensional dynamic contrast-enhanced ultrasound compared with two-dimensional DCE-US</title><title>Japanese journal of radiology</title><addtitle>Jpn J Radiol</addtitle><addtitle>Jpn J Radiol</addtitle><description>Objectives To evaluate quantitative three-dimensional (3D) dynamic contrast-enhanced ultrasound (DCE-US) in the assessment of tumor angiogenesis using an orthotropic liver tumor model. Methods Nine New Zealand white rabbits with liver orthotropic VX2 tumors were established and imaged by two-dimensional (2D) and 3D DCE-US after SonoVue ® bolus injections. The intraclass correlation coefficients of perfusion parameters, including peak intensity (PI), mean transit time, time to peak, and area under the curve, were calculated based on time-intensity curve. The percentage area of microvascular (PAMV) and the expression of vascular endothelial growth factor (VEGF) were both evaluated by immunohistochemical analysis and weighted by the tumor activity area ratio. Correlations between quantitative and histologic parameters were analyzed. Results The reproducibility of 3D DCE-US quantitative parameters was excellent (ICC 0.91–0.99); but only PI showed high reproducibility (ICC 0.97) in 2D. None of the parameters of quantitative 2D DCE-US were significantly correlated with weighted PAMV or VEGF. For 3D DCE-US, there was a positive correlation between PI and weighted PAMV ( r  = 0.74, P  = 0.04) as well as VEGF ( r  = 0.79, P  = 0.02). Conclusion Quantitative parameters of 3D DCE-US show feasibility, higher reproducibility and accuracy for the assessment of tumor angiogenesis using an orthotropic liver tumor model compared with 2D DCE-US.</description><subject>Angiogenesis</subject><subject>Animals</subject><subject>Contrast Media</subject><subject>Correlation coefficients</subject><subject>Disease Models, Animal</subject><subject>Drug delivery systems</subject><subject>Feasibility studies</subject><subject>Growth factors</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Imaging</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Liver</subject><subject>Liver - diagnostic imaging</subject><subject>Liver - pathology</subject><subject>Liver cancer</subject><subject>Liver Neoplasms - diagnostic imaging</subject><subject>Liver Neoplasms - pathology</subject><subject>Mathematical models</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Microvasculature</subject><subject>Neovascularization, Pathologic - diagnostic imaging</subject><subject>Neovascularization, Pathologic - pathology</subject><subject>Nuclear Medicine</subject><subject>Original Article</subject><subject>Parameters</subject><subject>Perfusion</subject><subject>Rabbits</subject><subject>Radiology</subject><subject>Radiotherapy</subject><subject>Reproducibility</subject><subject>Reproducibility of Results</subject><subject>Transit time</subject><subject>Tumors</subject><subject>Two dimensional models</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonography - methods</subject><subject>Ultrasound</subject><subject>Vascular endothelial growth factor</subject><issn>1867-1071</issn><issn>1867-108X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kc1u1DAUhS0EoqXwAiyQJTZsDP6bxFlWQ_mRKrGASuwsx7mZcZXYg6_Tqn0ZXhV3phTBAi_sq3u-e2z5EPJS8LeC8_YdCtFwzbjoGOemEez2ETkWpmmZ4Ob744e6FUfkGeIl541WWj8lR0poLlopj8nPU0RAnCEWmkbq4iakDUTAgDREml3fh6rksk0lp13wdApXkGlZ5pSRLhjihpZtBmBDqC4YUnQTHW6imyvsUyzZYWEQty56GOgy3TXSEocqzjuXa-86lC0t1-kvi_frM3bx9Tl5MroJ4cX9eUIuPpx9W39i518-fl6fnjOv2lVh3vW6kUp73nhuFEjT9d3IR8V76FdaNp3wnfEKgMtOqVHCynknlRESjFlpdULeHHx3Of1YAIudA3qYJhchLWilrN-1XxV9_Q96mZZcn7ynuKlb21VKHiifE2KG0e5ymF2-sYLbu_jsIT5b47P7-OxtHXp1b730MwwPI7_zqoA6AFiluIH85-7_2P4ClgepdA</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Zheng, Qiao</creator><creator>Zhang, Jian-chao</creator><creator>Wang, Zhu</creator><creator>Ruan, Si-Min</creator><creator>Li, Wei</creator><creator>Pan, Fu-Shun</creator><creator>Chen, Li-Da</creator><creator>Zhang, Yu-Chen</creator><creator>Wu, Wen-Xin</creator><creator>Xie, Xiao-Yan</creator><creator>Lu, Ming-De</creator><creator>Shan, Quan-Yuan</creator><creator>Wang, Wei</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9485-583X</orcidid></search><sort><creationdate>20191001</creationdate><title>Assessment of angiogenesis in rabbit orthotropic liver tumors using three-dimensional dynamic contrast-enhanced ultrasound compared with two-dimensional DCE-US</title><author>Zheng, Qiao ; Zhang, Jian-chao ; Wang, Zhu ; Ruan, Si-Min ; Li, Wei ; Pan, Fu-Shun ; Chen, Li-Da ; Zhang, Yu-Chen ; Wu, Wen-Xin ; Xie, Xiao-Yan ; Lu, Ming-De ; Shan, Quan-Yuan ; Wang, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-cab46234c06c083e289b9f0f30beb542691c98c3ee02933f2e5aca23812e88543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Angiogenesis</topic><topic>Animals</topic><topic>Contrast Media</topic><topic>Correlation coefficients</topic><topic>Disease Models, Animal</topic><topic>Drug delivery systems</topic><topic>Feasibility studies</topic><topic>Growth factors</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Imaging</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Liver</topic><topic>Liver - diagnostic imaging</topic><topic>Liver - pathology</topic><topic>Liver cancer</topic><topic>Liver Neoplasms - diagnostic imaging</topic><topic>Liver Neoplasms - pathology</topic><topic>Mathematical models</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Microvasculature</topic><topic>Neovascularization, Pathologic - diagnostic imaging</topic><topic>Neovascularization, Pathologic - pathology</topic><topic>Nuclear Medicine</topic><topic>Original Article</topic><topic>Parameters</topic><topic>Perfusion</topic><topic>Rabbits</topic><topic>Radiology</topic><topic>Radiotherapy</topic><topic>Reproducibility</topic><topic>Reproducibility of Results</topic><topic>Transit time</topic><topic>Tumors</topic><topic>Two dimensional models</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonography - methods</topic><topic>Ultrasound</topic><topic>Vascular endothelial growth factor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Qiao</creatorcontrib><creatorcontrib>Zhang, Jian-chao</creatorcontrib><creatorcontrib>Wang, Zhu</creatorcontrib><creatorcontrib>Ruan, Si-Min</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Pan, Fu-Shun</creatorcontrib><creatorcontrib>Chen, Li-Da</creatorcontrib><creatorcontrib>Zhang, Yu-Chen</creatorcontrib><creatorcontrib>Wu, Wen-Xin</creatorcontrib><creatorcontrib>Xie, Xiao-Yan</creatorcontrib><creatorcontrib>Lu, Ming-De</creatorcontrib><creatorcontrib>Shan, Quan-Yuan</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Japanese journal of radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Qiao</au><au>Zhang, Jian-chao</au><au>Wang, Zhu</au><au>Ruan, Si-Min</au><au>Li, Wei</au><au>Pan, Fu-Shun</au><au>Chen, Li-Da</au><au>Zhang, Yu-Chen</au><au>Wu, Wen-Xin</au><au>Xie, Xiao-Yan</au><au>Lu, Ming-De</au><au>Shan, Quan-Yuan</au><au>Wang, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of angiogenesis in rabbit orthotropic liver tumors using three-dimensional dynamic contrast-enhanced ultrasound compared with two-dimensional DCE-US</atitle><jtitle>Japanese journal of radiology</jtitle><stitle>Jpn J Radiol</stitle><addtitle>Jpn J Radiol</addtitle><date>2019-10-01</date><risdate>2019</risdate><volume>37</volume><issue>10</issue><spage>701</spage><epage>709</epage><pages>701-709</pages><issn>1867-1071</issn><eissn>1867-108X</eissn><abstract>Objectives To evaluate quantitative three-dimensional (3D) dynamic contrast-enhanced ultrasound (DCE-US) in the assessment of tumor angiogenesis using an orthotropic liver tumor model. Methods Nine New Zealand white rabbits with liver orthotropic VX2 tumors were established and imaged by two-dimensional (2D) and 3D DCE-US after SonoVue ® bolus injections. The intraclass correlation coefficients of perfusion parameters, including peak intensity (PI), mean transit time, time to peak, and area under the curve, were calculated based on time-intensity curve. The percentage area of microvascular (PAMV) and the expression of vascular endothelial growth factor (VEGF) were both evaluated by immunohistochemical analysis and weighted by the tumor activity area ratio. Correlations between quantitative and histologic parameters were analyzed. Results The reproducibility of 3D DCE-US quantitative parameters was excellent (ICC 0.91–0.99); but only PI showed high reproducibility (ICC 0.97) in 2D. None of the parameters of quantitative 2D DCE-US were significantly correlated with weighted PAMV or VEGF. For 3D DCE-US, there was a positive correlation between PI and weighted PAMV ( r  = 0.74, P  = 0.04) as well as VEGF ( r  = 0.79, P  = 0.02). Conclusion Quantitative parameters of 3D DCE-US show feasibility, higher reproducibility and accuracy for the assessment of tumor angiogenesis using an orthotropic liver tumor model compared with 2D DCE-US.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><pmid>31401722</pmid><doi>10.1007/s11604-019-00861-z</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9485-583X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1867-1071
ispartof Japanese journal of radiology, 2019-10, Vol.37 (10), p.701-709
issn 1867-1071
1867-108X
language eng
recordid cdi_proquest_miscellaneous_2272222222
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Angiogenesis
Animals
Contrast Media
Correlation coefficients
Disease Models, Animal
Drug delivery systems
Feasibility studies
Growth factors
Humans
Image Enhancement - methods
Imaging
Imaging, Three-Dimensional - methods
Liver
Liver - diagnostic imaging
Liver - pathology
Liver cancer
Liver Neoplasms - diagnostic imaging
Liver Neoplasms - pathology
Mathematical models
Medicine
Medicine & Public Health
Microvasculature
Neovascularization, Pathologic - diagnostic imaging
Neovascularization, Pathologic - pathology
Nuclear Medicine
Original Article
Parameters
Perfusion
Rabbits
Radiology
Radiotherapy
Reproducibility
Reproducibility of Results
Transit time
Tumors
Two dimensional models
Ultrasonic imaging
Ultrasonography - methods
Ultrasound
Vascular endothelial growth factor
title Assessment of angiogenesis in rabbit orthotropic liver tumors using three-dimensional dynamic contrast-enhanced ultrasound compared with two-dimensional DCE-US
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T22%3A32%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20angiogenesis%20in%20rabbit%20orthotropic%20liver%20tumors%20using%20three-dimensional%20dynamic%20contrast-enhanced%20ultrasound%20compared%20with%20two-dimensional%20DCE-US&rft.jtitle=Japanese%20journal%20of%20radiology&rft.au=Zheng,%20Qiao&rft.date=2019-10-01&rft.volume=37&rft.issue=10&rft.spage=701&rft.epage=709&rft.pages=701-709&rft.issn=1867-1071&rft.eissn=1867-108X&rft_id=info:doi/10.1007/s11604-019-00861-z&rft_dat=%3Cproquest_cross%3E2270822779%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2270822779&rft_id=info:pmid/31401722&rfr_iscdi=true