Bioinspired Metamaterials: Multibands Electromagnetic Wave Adaptability and Hydrophobic Characteristics

Although various photonic devices inspired by natural materials have been developed, there is no research focusing on multibands adaptability, which is not conducive to the advancement of materials science. Herein, inspired by the moth eye surface model, state‐of‐the‐art hierarchical metamaterials (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2019-10, Vol.15 (40), p.e1902730-n/a
Hauptverfasser: Huang, Lingxi, Duan, Yuping, Dai, Xuhao, Zeng, Yuansong, Ma, Guojia, Liu, Yi, Gao, Shaohua, Zhang, Weiping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 40
container_start_page e1902730
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 15
creator Huang, Lingxi
Duan, Yuping
Dai, Xuhao
Zeng, Yuansong
Ma, Guojia
Liu, Yi
Gao, Shaohua
Zhang, Weiping
description Although various photonic devices inspired by natural materials have been developed, there is no research focusing on multibands adaptability, which is not conducive to the advancement of materials science. Herein, inspired by the moth eye surface model, state‐of‐the‐art hierarchical metamaterials (MMs) used as tunable devices in multispectral electromagnetic‐waves (EMWs) frequency range, from microwave to ultraviolet (UV), are designed and prepared. Experimentally, the robust broad bandwidth of microwave absorption greater than 90% (reflection loss (RL) < −10 dB) covering almost entire X and Ku bands (8.04–17.88 GHz) under a deep sub‐wavelength thickness (1 mm) is demonstrated. The infrared emissivity is reduced and does not affect the microwave absorption simultaneously, further realizing anti‐reflection and camouflage via the strong visible light scattering by the microstructure, and can prevent degradation by reducing the transmittance to less than 10% over the whole near UV band, as well as having hydrophobic abilities. The mechanism explored via simulation model is that topological effects are found in the bio‐structure. This discovery points to a pathway for using natural models to overcome physical limits of MMs and has promising prospect in novel photonic materials. Inspired by the moth eye surface structure, state‐of‐the‐art hierarchical metamaterials with broadband absorption of microwaves are designed and prepared. The hierarchical metamaterials also demonstrate multibands adaptability. Microwave‐infrared compatible manipulation, anti‐reflection and color‐changing, ultraviolet shielding, and self‐cleaning are realized simultaneously, which have great potential application in the stealth and camouflage field.
doi_str_mv 10.1002/smll.201902730
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2272220875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2299376046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3730-1b5f69cd70fc08d77d95725528e9088effc7077bc756f430542ee2cce4db59583</originalsourceid><addsrcrecordid>eNqFkU1P4zAQhi3Eio_ClSOKxGUv7Y6dOI65QcWX1GoPC-IYOfYEjJwP7IRV_z2uWoq0lz3NHJ730WheQs4ozCgA-xUa52YMqAQmUtgjRzSn6TQvmNzf7RQOyXEIbwApZZk4IIcpzYDxPDsiL9e2s23orUeTLHFQjRrQW-XCZbIc3WAr1ZqQ3DjUg-8a9dLiYHXyrD4wuTKqH1RlnR1WScSS-5XxXf_aVZGYvyqv9NoVYiCckB91lOLpdk7I0-3N4_x-uvh99zC_Wkx1Gu-f0orXudRGQK2hMEIYyQXjnBUooSiwrrUAISoteF5nKfCMITKtMTMVl7xIJ-Tnxtv77n3EMJSNDRqdUy12YygZE4wxKASP6MU_6Fs3-jZeFykpU5FDlkdqtqG070LwWJe9t43yq5JCua6gXFdQ7iqIgfOtdqwaNDv86-cRkBvgr3W4-o-u_LNcLL7lnzOUk9E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2299376046</pqid></control><display><type>article</type><title>Bioinspired Metamaterials: Multibands Electromagnetic Wave Adaptability and Hydrophobic Characteristics</title><source>Wiley Online Library All Journals</source><creator>Huang, Lingxi ; Duan, Yuping ; Dai, Xuhao ; Zeng, Yuansong ; Ma, Guojia ; Liu, Yi ; Gao, Shaohua ; Zhang, Weiping</creator><creatorcontrib>Huang, Lingxi ; Duan, Yuping ; Dai, Xuhao ; Zeng, Yuansong ; Ma, Guojia ; Liu, Yi ; Gao, Shaohua ; Zhang, Weiping</creatorcontrib><description>Although various photonic devices inspired by natural materials have been developed, there is no research focusing on multibands adaptability, which is not conducive to the advancement of materials science. Herein, inspired by the moth eye surface model, state‐of‐the‐art hierarchical metamaterials (MMs) used as tunable devices in multispectral electromagnetic‐waves (EMWs) frequency range, from microwave to ultraviolet (UV), are designed and prepared. Experimentally, the robust broad bandwidth of microwave absorption greater than 90% (reflection loss (RL) &lt; −10 dB) covering almost entire X and Ku bands (8.04–17.88 GHz) under a deep sub‐wavelength thickness (1 mm) is demonstrated. The infrared emissivity is reduced and does not affect the microwave absorption simultaneously, further realizing anti‐reflection and camouflage via the strong visible light scattering by the microstructure, and can prevent degradation by reducing the transmittance to less than 10% over the whole near UV band, as well as having hydrophobic abilities. The mechanism explored via simulation model is that topological effects are found in the bio‐structure. This discovery points to a pathway for using natural models to overcome physical limits of MMs and has promising prospect in novel photonic materials. Inspired by the moth eye surface structure, state‐of‐the‐art hierarchical metamaterials with broadband absorption of microwaves are designed and prepared. The hierarchical metamaterials also demonstrate multibands adaptability. Microwave‐infrared compatible manipulation, anti‐reflection and color‐changing, ultraviolet shielding, and self‐cleaning are realized simultaneously, which have great potential application in the stealth and camouflage field.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201902730</identifier><identifier>PMID: 31402564</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Camouflage ; Computer simulation ; Electromagnetic radiation ; Frequency ranges ; hierarchical metamaterials ; Hydrophobicity ; Light scattering ; Materials science ; Metamaterials ; Microwave absorption ; moth‐eye structure ; multibands adaptability ; Nanotechnology ; Photonics ; Reflection</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2019-10, Vol.15 (40), p.e1902730-n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3730-1b5f69cd70fc08d77d95725528e9088effc7077bc756f430542ee2cce4db59583</citedby><cites>FETCH-LOGICAL-c3730-1b5f69cd70fc08d77d95725528e9088effc7077bc756f430542ee2cce4db59583</cites><orcidid>0000-0001-5599-7168</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.201902730$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.201902730$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31402564$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Lingxi</creatorcontrib><creatorcontrib>Duan, Yuping</creatorcontrib><creatorcontrib>Dai, Xuhao</creatorcontrib><creatorcontrib>Zeng, Yuansong</creatorcontrib><creatorcontrib>Ma, Guojia</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Gao, Shaohua</creatorcontrib><creatorcontrib>Zhang, Weiping</creatorcontrib><title>Bioinspired Metamaterials: Multibands Electromagnetic Wave Adaptability and Hydrophobic Characteristics</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Although various photonic devices inspired by natural materials have been developed, there is no research focusing on multibands adaptability, which is not conducive to the advancement of materials science. Herein, inspired by the moth eye surface model, state‐of‐the‐art hierarchical metamaterials (MMs) used as tunable devices in multispectral electromagnetic‐waves (EMWs) frequency range, from microwave to ultraviolet (UV), are designed and prepared. Experimentally, the robust broad bandwidth of microwave absorption greater than 90% (reflection loss (RL) &lt; −10 dB) covering almost entire X and Ku bands (8.04–17.88 GHz) under a deep sub‐wavelength thickness (1 mm) is demonstrated. The infrared emissivity is reduced and does not affect the microwave absorption simultaneously, further realizing anti‐reflection and camouflage via the strong visible light scattering by the microstructure, and can prevent degradation by reducing the transmittance to less than 10% over the whole near UV band, as well as having hydrophobic abilities. The mechanism explored via simulation model is that topological effects are found in the bio‐structure. This discovery points to a pathway for using natural models to overcome physical limits of MMs and has promising prospect in novel photonic materials. Inspired by the moth eye surface structure, state‐of‐the‐art hierarchical metamaterials with broadband absorption of microwaves are designed and prepared. The hierarchical metamaterials also demonstrate multibands adaptability. Microwave‐infrared compatible manipulation, anti‐reflection and color‐changing, ultraviolet shielding, and self‐cleaning are realized simultaneously, which have great potential application in the stealth and camouflage field.</description><subject>Camouflage</subject><subject>Computer simulation</subject><subject>Electromagnetic radiation</subject><subject>Frequency ranges</subject><subject>hierarchical metamaterials</subject><subject>Hydrophobicity</subject><subject>Light scattering</subject><subject>Materials science</subject><subject>Metamaterials</subject><subject>Microwave absorption</subject><subject>moth‐eye structure</subject><subject>multibands adaptability</subject><subject>Nanotechnology</subject><subject>Photonics</subject><subject>Reflection</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkU1P4zAQhi3Eio_ClSOKxGUv7Y6dOI65QcWX1GoPC-IYOfYEjJwP7IRV_z2uWoq0lz3NHJ730WheQs4ozCgA-xUa52YMqAQmUtgjRzSn6TQvmNzf7RQOyXEIbwApZZk4IIcpzYDxPDsiL9e2s23orUeTLHFQjRrQW-XCZbIc3WAr1ZqQ3DjUg-8a9dLiYHXyrD4wuTKqH1RlnR1WScSS-5XxXf_aVZGYvyqv9NoVYiCckB91lOLpdk7I0-3N4_x-uvh99zC_Wkx1Gu-f0orXudRGQK2hMEIYyQXjnBUooSiwrrUAISoteF5nKfCMITKtMTMVl7xIJ-Tnxtv77n3EMJSNDRqdUy12YygZE4wxKASP6MU_6Fs3-jZeFykpU5FDlkdqtqG070LwWJe9t43yq5JCua6gXFdQ7iqIgfOtdqwaNDv86-cRkBvgr3W4-o-u_LNcLL7lnzOUk9E</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Huang, Lingxi</creator><creator>Duan, Yuping</creator><creator>Dai, Xuhao</creator><creator>Zeng, Yuansong</creator><creator>Ma, Guojia</creator><creator>Liu, Yi</creator><creator>Gao, Shaohua</creator><creator>Zhang, Weiping</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5599-7168</orcidid></search><sort><creationdate>20191001</creationdate><title>Bioinspired Metamaterials: Multibands Electromagnetic Wave Adaptability and Hydrophobic Characteristics</title><author>Huang, Lingxi ; Duan, Yuping ; Dai, Xuhao ; Zeng, Yuansong ; Ma, Guojia ; Liu, Yi ; Gao, Shaohua ; Zhang, Weiping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3730-1b5f69cd70fc08d77d95725528e9088effc7077bc756f430542ee2cce4db59583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Camouflage</topic><topic>Computer simulation</topic><topic>Electromagnetic radiation</topic><topic>Frequency ranges</topic><topic>hierarchical metamaterials</topic><topic>Hydrophobicity</topic><topic>Light scattering</topic><topic>Materials science</topic><topic>Metamaterials</topic><topic>Microwave absorption</topic><topic>moth‐eye structure</topic><topic>multibands adaptability</topic><topic>Nanotechnology</topic><topic>Photonics</topic><topic>Reflection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Lingxi</creatorcontrib><creatorcontrib>Duan, Yuping</creatorcontrib><creatorcontrib>Dai, Xuhao</creatorcontrib><creatorcontrib>Zeng, Yuansong</creatorcontrib><creatorcontrib>Ma, Guojia</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Gao, Shaohua</creatorcontrib><creatorcontrib>Zhang, Weiping</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Lingxi</au><au>Duan, Yuping</au><au>Dai, Xuhao</au><au>Zeng, Yuansong</au><au>Ma, Guojia</au><au>Liu, Yi</au><au>Gao, Shaohua</au><au>Zhang, Weiping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioinspired Metamaterials: Multibands Electromagnetic Wave Adaptability and Hydrophobic Characteristics</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2019-10-01</date><risdate>2019</risdate><volume>15</volume><issue>40</issue><spage>e1902730</spage><epage>n/a</epage><pages>e1902730-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Although various photonic devices inspired by natural materials have been developed, there is no research focusing on multibands adaptability, which is not conducive to the advancement of materials science. Herein, inspired by the moth eye surface model, state‐of‐the‐art hierarchical metamaterials (MMs) used as tunable devices in multispectral electromagnetic‐waves (EMWs) frequency range, from microwave to ultraviolet (UV), are designed and prepared. Experimentally, the robust broad bandwidth of microwave absorption greater than 90% (reflection loss (RL) &lt; −10 dB) covering almost entire X and Ku bands (8.04–17.88 GHz) under a deep sub‐wavelength thickness (1 mm) is demonstrated. The infrared emissivity is reduced and does not affect the microwave absorption simultaneously, further realizing anti‐reflection and camouflage via the strong visible light scattering by the microstructure, and can prevent degradation by reducing the transmittance to less than 10% over the whole near UV band, as well as having hydrophobic abilities. The mechanism explored via simulation model is that topological effects are found in the bio‐structure. This discovery points to a pathway for using natural models to overcome physical limits of MMs and has promising prospect in novel photonic materials. Inspired by the moth eye surface structure, state‐of‐the‐art hierarchical metamaterials with broadband absorption of microwaves are designed and prepared. The hierarchical metamaterials also demonstrate multibands adaptability. Microwave‐infrared compatible manipulation, anti‐reflection and color‐changing, ultraviolet shielding, and self‐cleaning are realized simultaneously, which have great potential application in the stealth and camouflage field.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31402564</pmid><doi>10.1002/smll.201902730</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5599-7168</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2019-10, Vol.15 (40), p.e1902730-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2272220875
source Wiley Online Library All Journals
subjects Camouflage
Computer simulation
Electromagnetic radiation
Frequency ranges
hierarchical metamaterials
Hydrophobicity
Light scattering
Materials science
Metamaterials
Microwave absorption
moth‐eye structure
multibands adaptability
Nanotechnology
Photonics
Reflection
title Bioinspired Metamaterials: Multibands Electromagnetic Wave Adaptability and Hydrophobic Characteristics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A03%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioinspired%20Metamaterials:%20Multibands%20Electromagnetic%20Wave%20Adaptability%20and%20Hydrophobic%20Characteristics&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Huang,%20Lingxi&rft.date=2019-10-01&rft.volume=15&rft.issue=40&rft.spage=e1902730&rft.epage=n/a&rft.pages=e1902730-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201902730&rft_dat=%3Cproquest_cross%3E2299376046%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2299376046&rft_id=info:pmid/31402564&rfr_iscdi=true