Time-delay estimation based computed torque control with robust adaptive RBF neural network compensator for a rehabilitation exoskeleton

A new approach to gait rehabilitation task of a 12 DOF lower limb exoskeleton is proposed combining time-delay estimation (TDE) based computed torque control (CTC) and robust adaptive RBF neural networks. In addition to the conventional advantages of the CTC, TDE technique is integrated to estimate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISA transactions 2020-02, Vol.97, p.171-181
Hauptverfasser: Han, Shuaishuai, Wang, Haoping, Tian, Yang, Christov, Nicolai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 181
container_issue
container_start_page 171
container_title ISA transactions
container_volume 97
creator Han, Shuaishuai
Wang, Haoping
Tian, Yang
Christov, Nicolai
description A new approach to gait rehabilitation task of a 12 DOF lower limb exoskeleton is proposed combining time-delay estimation (TDE) based computed torque control (CTC) and robust adaptive RBF neural networks. In addition to the conventional advantages of the CTC, TDE technique is integrated to estimate unmodeled dynamics and external disturbance. To realize more accurate tracking, a robust adaptive RBF neural networks compensator is designed to approximate and compensate TDE error. The final asymptotic stability is guaranteed with Lyapunov criteria. To validate the proposed approach, co-simulation experiments are realized using SolidWorks, SimMechanics and MATLAB/Robotics Toolbox. Compared to CTC, sliding mode based CTC and TDE based CTC, the higher performances of the proposed controller are demonstrated by co-simulation. •A TDE based CTC method is proposed with a robust adaptive RBF neural networks.•To enhance CTC method, TDE is used to compensate unknown dynamics and disturbance.•To reduce TDE error, a robust adaptive RBF neural networks compensator is designed.•The asymptotic stability of exoskeleton control is guaranteed with Lyapunov theory.•Compared to CTC, SMC/TDE-CTC, high performances of the proposed method are validated.
doi_str_mv 10.1016/j.isatra.2019.07.030
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2271846447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0019057819303350</els_id><sourcerecordid>2271846447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-bd2801f9f20c2c56e4cbe49ac747c371f7df66f7776b1fe106ad9da8542e5b13</originalsourceid><addsrcrecordid>eNp9Uctu3SAQRVWj5ubxB1XFshs7A35gbyq1UV5SpErR3SMMg8KNbW4BJ80f9LND4rTLLtBhxDlzmDmEfGZQMmDt2a50UaWgSg6sL0GUUMEHsmGd6AsOnH8kG8gvBTSiOyRHMe4AgDd994kcVqzqe97wDfmzdRMWBkf1TDEmN6nk_EwHFdFQ7af9kvIl-fBrwVzPKfiRPrl0T4MflpioMmqf3CPSux-XdMYlqDFDevLh4U2Pc_6lD9Tmo2jAezW40aXVBn_7-IAjJj-fkAOrxoin73hMtpcX2_Pr4vbn1c3599tCVy1PxWB4B8z2loPmummx1gPWvdKiFroSzApj29YKIdqBWWTQKtMb1TU1x2Zg1TH5urbdB59HiklOLmocRzWjX6LkXLCubutaZGq9UnXwMQa0ch_yfsKzZCBfI5A7uUYgXyOQIGSOIMu-vDssw4Tmn-jvzjPh20rAPOajwyCjdjhrNC6gTtJ493-HF8BmnbE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2271846447</pqid></control><display><type>article</type><title>Time-delay estimation based computed torque control with robust adaptive RBF neural network compensator for a rehabilitation exoskeleton</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Han, Shuaishuai ; Wang, Haoping ; Tian, Yang ; Christov, Nicolai</creator><creatorcontrib>Han, Shuaishuai ; Wang, Haoping ; Tian, Yang ; Christov, Nicolai</creatorcontrib><description>A new approach to gait rehabilitation task of a 12 DOF lower limb exoskeleton is proposed combining time-delay estimation (TDE) based computed torque control (CTC) and robust adaptive RBF neural networks. In addition to the conventional advantages of the CTC, TDE technique is integrated to estimate unmodeled dynamics and external disturbance. To realize more accurate tracking, a robust adaptive RBF neural networks compensator is designed to approximate and compensate TDE error. The final asymptotic stability is guaranteed with Lyapunov criteria. To validate the proposed approach, co-simulation experiments are realized using SolidWorks, SimMechanics and MATLAB/Robotics Toolbox. Compared to CTC, sliding mode based CTC and TDE based CTC, the higher performances of the proposed controller are demonstrated by co-simulation. •A TDE based CTC method is proposed with a robust adaptive RBF neural networks.•To enhance CTC method, TDE is used to compensate unknown dynamics and disturbance.•To reduce TDE error, a robust adaptive RBF neural networks compensator is designed.•The asymptotic stability of exoskeleton control is guaranteed with Lyapunov theory.•Compared to CTC, SMC/TDE-CTC, high performances of the proposed method are validated.</description><identifier>ISSN: 0019-0578</identifier><identifier>EISSN: 1879-2022</identifier><identifier>DOI: 10.1016/j.isatra.2019.07.030</identifier><identifier>PMID: 31399252</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>12 DOF lower limb exoskeleton ; Algorithms ; Biomechanical Phenomena ; Computed torque control ; Computer Simulation ; Equipment Design ; Exoskeleton Device ; Gait ; Humans ; Lower Extremity ; Neural Networks, Computer ; Rehabilitation - instrumentation ; Robotics ; Robotics toolbox ; Robust adaptive RBF neural networks ; Time-delay estimation ; Torque</subject><ispartof>ISA transactions, 2020-02, Vol.97, p.171-181</ispartof><rights>2019 ISA</rights><rights>Copyright © 2019 ISA. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-bd2801f9f20c2c56e4cbe49ac747c371f7df66f7776b1fe106ad9da8542e5b13</citedby><cites>FETCH-LOGICAL-c362t-bd2801f9f20c2c56e4cbe49ac747c371f7df66f7776b1fe106ad9da8542e5b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.isatra.2019.07.030$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31399252$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Shuaishuai</creatorcontrib><creatorcontrib>Wang, Haoping</creatorcontrib><creatorcontrib>Tian, Yang</creatorcontrib><creatorcontrib>Christov, Nicolai</creatorcontrib><title>Time-delay estimation based computed torque control with robust adaptive RBF neural network compensator for a rehabilitation exoskeleton</title><title>ISA transactions</title><addtitle>ISA Trans</addtitle><description>A new approach to gait rehabilitation task of a 12 DOF lower limb exoskeleton is proposed combining time-delay estimation (TDE) based computed torque control (CTC) and robust adaptive RBF neural networks. In addition to the conventional advantages of the CTC, TDE technique is integrated to estimate unmodeled dynamics and external disturbance. To realize more accurate tracking, a robust adaptive RBF neural networks compensator is designed to approximate and compensate TDE error. The final asymptotic stability is guaranteed with Lyapunov criteria. To validate the proposed approach, co-simulation experiments are realized using SolidWorks, SimMechanics and MATLAB/Robotics Toolbox. Compared to CTC, sliding mode based CTC and TDE based CTC, the higher performances of the proposed controller are demonstrated by co-simulation. •A TDE based CTC method is proposed with a robust adaptive RBF neural networks.•To enhance CTC method, TDE is used to compensate unknown dynamics and disturbance.•To reduce TDE error, a robust adaptive RBF neural networks compensator is designed.•The asymptotic stability of exoskeleton control is guaranteed with Lyapunov theory.•Compared to CTC, SMC/TDE-CTC, high performances of the proposed method are validated.</description><subject>12 DOF lower limb exoskeleton</subject><subject>Algorithms</subject><subject>Biomechanical Phenomena</subject><subject>Computed torque control</subject><subject>Computer Simulation</subject><subject>Equipment Design</subject><subject>Exoskeleton Device</subject><subject>Gait</subject><subject>Humans</subject><subject>Lower Extremity</subject><subject>Neural Networks, Computer</subject><subject>Rehabilitation - instrumentation</subject><subject>Robotics</subject><subject>Robotics toolbox</subject><subject>Robust adaptive RBF neural networks</subject><subject>Time-delay estimation</subject><subject>Torque</subject><issn>0019-0578</issn><issn>1879-2022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9Uctu3SAQRVWj5ubxB1XFshs7A35gbyq1UV5SpErR3SMMg8KNbW4BJ80f9LND4rTLLtBhxDlzmDmEfGZQMmDt2a50UaWgSg6sL0GUUMEHsmGd6AsOnH8kG8gvBTSiOyRHMe4AgDd994kcVqzqe97wDfmzdRMWBkf1TDEmN6nk_EwHFdFQ7af9kvIl-fBrwVzPKfiRPrl0T4MflpioMmqf3CPSux-XdMYlqDFDevLh4U2Pc_6lD9Tmo2jAezW40aXVBn_7-IAjJj-fkAOrxoin73hMtpcX2_Pr4vbn1c3599tCVy1PxWB4B8z2loPmummx1gPWvdKiFroSzApj29YKIdqBWWTQKtMb1TU1x2Zg1TH5urbdB59HiklOLmocRzWjX6LkXLCubutaZGq9UnXwMQa0ch_yfsKzZCBfI5A7uUYgXyOQIGSOIMu-vDssw4Tmn-jvzjPh20rAPOajwyCjdjhrNC6gTtJ493-HF8BmnbE</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Han, Shuaishuai</creator><creator>Wang, Haoping</creator><creator>Tian, Yang</creator><creator>Christov, Nicolai</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202002</creationdate><title>Time-delay estimation based computed torque control with robust adaptive RBF neural network compensator for a rehabilitation exoskeleton</title><author>Han, Shuaishuai ; Wang, Haoping ; Tian, Yang ; Christov, Nicolai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-bd2801f9f20c2c56e4cbe49ac747c371f7df66f7776b1fe106ad9da8542e5b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>12 DOF lower limb exoskeleton</topic><topic>Algorithms</topic><topic>Biomechanical Phenomena</topic><topic>Computed torque control</topic><topic>Computer Simulation</topic><topic>Equipment Design</topic><topic>Exoskeleton Device</topic><topic>Gait</topic><topic>Humans</topic><topic>Lower Extremity</topic><topic>Neural Networks, Computer</topic><topic>Rehabilitation - instrumentation</topic><topic>Robotics</topic><topic>Robotics toolbox</topic><topic>Robust adaptive RBF neural networks</topic><topic>Time-delay estimation</topic><topic>Torque</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Shuaishuai</creatorcontrib><creatorcontrib>Wang, Haoping</creatorcontrib><creatorcontrib>Tian, Yang</creatorcontrib><creatorcontrib>Christov, Nicolai</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ISA transactions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Shuaishuai</au><au>Wang, Haoping</au><au>Tian, Yang</au><au>Christov, Nicolai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-delay estimation based computed torque control with robust adaptive RBF neural network compensator for a rehabilitation exoskeleton</atitle><jtitle>ISA transactions</jtitle><addtitle>ISA Trans</addtitle><date>2020-02</date><risdate>2020</risdate><volume>97</volume><spage>171</spage><epage>181</epage><pages>171-181</pages><issn>0019-0578</issn><eissn>1879-2022</eissn><abstract>A new approach to gait rehabilitation task of a 12 DOF lower limb exoskeleton is proposed combining time-delay estimation (TDE) based computed torque control (CTC) and robust adaptive RBF neural networks. In addition to the conventional advantages of the CTC, TDE technique is integrated to estimate unmodeled dynamics and external disturbance. To realize more accurate tracking, a robust adaptive RBF neural networks compensator is designed to approximate and compensate TDE error. The final asymptotic stability is guaranteed with Lyapunov criteria. To validate the proposed approach, co-simulation experiments are realized using SolidWorks, SimMechanics and MATLAB/Robotics Toolbox. Compared to CTC, sliding mode based CTC and TDE based CTC, the higher performances of the proposed controller are demonstrated by co-simulation. •A TDE based CTC method is proposed with a robust adaptive RBF neural networks.•To enhance CTC method, TDE is used to compensate unknown dynamics and disturbance.•To reduce TDE error, a robust adaptive RBF neural networks compensator is designed.•The asymptotic stability of exoskeleton control is guaranteed with Lyapunov theory.•Compared to CTC, SMC/TDE-CTC, high performances of the proposed method are validated.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>31399252</pmid><doi>10.1016/j.isatra.2019.07.030</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0019-0578
ispartof ISA transactions, 2020-02, Vol.97, p.171-181
issn 0019-0578
1879-2022
language eng
recordid cdi_proquest_miscellaneous_2271846447
source MEDLINE; Elsevier ScienceDirect Journals
subjects 12 DOF lower limb exoskeleton
Algorithms
Biomechanical Phenomena
Computed torque control
Computer Simulation
Equipment Design
Exoskeleton Device
Gait
Humans
Lower Extremity
Neural Networks, Computer
Rehabilitation - instrumentation
Robotics
Robotics toolbox
Robust adaptive RBF neural networks
Time-delay estimation
Torque
title Time-delay estimation based computed torque control with robust adaptive RBF neural network compensator for a rehabilitation exoskeleton
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A39%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-delay%20estimation%20based%20computed%20torque%20control%20with%20robust%20adaptive%20RBF%20neural%20network%20compensator%20for%20a%20rehabilitation%20exoskeleton&rft.jtitle=ISA%20transactions&rft.au=Han,%20Shuaishuai&rft.date=2020-02&rft.volume=97&rft.spage=171&rft.epage=181&rft.pages=171-181&rft.issn=0019-0578&rft.eissn=1879-2022&rft_id=info:doi/10.1016/j.isatra.2019.07.030&rft_dat=%3Cproquest_cross%3E2271846447%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2271846447&rft_id=info:pmid/31399252&rft_els_id=S0019057819303350&rfr_iscdi=true