Time-delay estimation based computed torque control with robust adaptive RBF neural network compensator for a rehabilitation exoskeleton
A new approach to gait rehabilitation task of a 12 DOF lower limb exoskeleton is proposed combining time-delay estimation (TDE) based computed torque control (CTC) and robust adaptive RBF neural networks. In addition to the conventional advantages of the CTC, TDE technique is integrated to estimate...
Gespeichert in:
Veröffentlicht in: | ISA transactions 2020-02, Vol.97, p.171-181 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 181 |
---|---|
container_issue | |
container_start_page | 171 |
container_title | ISA transactions |
container_volume | 97 |
creator | Han, Shuaishuai Wang, Haoping Tian, Yang Christov, Nicolai |
description | A new approach to gait rehabilitation task of a 12 DOF lower limb exoskeleton is proposed combining time-delay estimation (TDE) based computed torque control (CTC) and robust adaptive RBF neural networks. In addition to the conventional advantages of the CTC, TDE technique is integrated to estimate unmodeled dynamics and external disturbance. To realize more accurate tracking, a robust adaptive RBF neural networks compensator is designed to approximate and compensate TDE error. The final asymptotic stability is guaranteed with Lyapunov criteria. To validate the proposed approach, co-simulation experiments are realized using SolidWorks, SimMechanics and MATLAB/Robotics Toolbox. Compared to CTC, sliding mode based CTC and TDE based CTC, the higher performances of the proposed controller are demonstrated by co-simulation.
•A TDE based CTC method is proposed with a robust adaptive RBF neural networks.•To enhance CTC method, TDE is used to compensate unknown dynamics and disturbance.•To reduce TDE error, a robust adaptive RBF neural networks compensator is designed.•The asymptotic stability of exoskeleton control is guaranteed with Lyapunov theory.•Compared to CTC, SMC/TDE-CTC, high performances of the proposed method are validated. |
doi_str_mv | 10.1016/j.isatra.2019.07.030 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2271846447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0019057819303350</els_id><sourcerecordid>2271846447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-bd2801f9f20c2c56e4cbe49ac747c371f7df66f7776b1fe106ad9da8542e5b13</originalsourceid><addsrcrecordid>eNp9Uctu3SAQRVWj5ubxB1XFshs7A35gbyq1UV5SpErR3SMMg8KNbW4BJ80f9LND4rTLLtBhxDlzmDmEfGZQMmDt2a50UaWgSg6sL0GUUMEHsmGd6AsOnH8kG8gvBTSiOyRHMe4AgDd994kcVqzqe97wDfmzdRMWBkf1TDEmN6nk_EwHFdFQ7af9kvIl-fBrwVzPKfiRPrl0T4MflpioMmqf3CPSux-XdMYlqDFDevLh4U2Pc_6lD9Tmo2jAezW40aXVBn_7-IAjJj-fkAOrxoin73hMtpcX2_Pr4vbn1c3599tCVy1PxWB4B8z2loPmummx1gPWvdKiFroSzApj29YKIdqBWWTQKtMb1TU1x2Zg1TH5urbdB59HiklOLmocRzWjX6LkXLCubutaZGq9UnXwMQa0ch_yfsKzZCBfI5A7uUYgXyOQIGSOIMu-vDssw4Tmn-jvzjPh20rAPOajwyCjdjhrNC6gTtJ493-HF8BmnbE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2271846447</pqid></control><display><type>article</type><title>Time-delay estimation based computed torque control with robust adaptive RBF neural network compensator for a rehabilitation exoskeleton</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Han, Shuaishuai ; Wang, Haoping ; Tian, Yang ; Christov, Nicolai</creator><creatorcontrib>Han, Shuaishuai ; Wang, Haoping ; Tian, Yang ; Christov, Nicolai</creatorcontrib><description>A new approach to gait rehabilitation task of a 12 DOF lower limb exoskeleton is proposed combining time-delay estimation (TDE) based computed torque control (CTC) and robust adaptive RBF neural networks. In addition to the conventional advantages of the CTC, TDE technique is integrated to estimate unmodeled dynamics and external disturbance. To realize more accurate tracking, a robust adaptive RBF neural networks compensator is designed to approximate and compensate TDE error. The final asymptotic stability is guaranteed with Lyapunov criteria. To validate the proposed approach, co-simulation experiments are realized using SolidWorks, SimMechanics and MATLAB/Robotics Toolbox. Compared to CTC, sliding mode based CTC and TDE based CTC, the higher performances of the proposed controller are demonstrated by co-simulation.
•A TDE based CTC method is proposed with a robust adaptive RBF neural networks.•To enhance CTC method, TDE is used to compensate unknown dynamics and disturbance.•To reduce TDE error, a robust adaptive RBF neural networks compensator is designed.•The asymptotic stability of exoskeleton control is guaranteed with Lyapunov theory.•Compared to CTC, SMC/TDE-CTC, high performances of the proposed method are validated.</description><identifier>ISSN: 0019-0578</identifier><identifier>EISSN: 1879-2022</identifier><identifier>DOI: 10.1016/j.isatra.2019.07.030</identifier><identifier>PMID: 31399252</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>12 DOF lower limb exoskeleton ; Algorithms ; Biomechanical Phenomena ; Computed torque control ; Computer Simulation ; Equipment Design ; Exoskeleton Device ; Gait ; Humans ; Lower Extremity ; Neural Networks, Computer ; Rehabilitation - instrumentation ; Robotics ; Robotics toolbox ; Robust adaptive RBF neural networks ; Time-delay estimation ; Torque</subject><ispartof>ISA transactions, 2020-02, Vol.97, p.171-181</ispartof><rights>2019 ISA</rights><rights>Copyright © 2019 ISA. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-bd2801f9f20c2c56e4cbe49ac747c371f7df66f7776b1fe106ad9da8542e5b13</citedby><cites>FETCH-LOGICAL-c362t-bd2801f9f20c2c56e4cbe49ac747c371f7df66f7776b1fe106ad9da8542e5b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.isatra.2019.07.030$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31399252$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Shuaishuai</creatorcontrib><creatorcontrib>Wang, Haoping</creatorcontrib><creatorcontrib>Tian, Yang</creatorcontrib><creatorcontrib>Christov, Nicolai</creatorcontrib><title>Time-delay estimation based computed torque control with robust adaptive RBF neural network compensator for a rehabilitation exoskeleton</title><title>ISA transactions</title><addtitle>ISA Trans</addtitle><description>A new approach to gait rehabilitation task of a 12 DOF lower limb exoskeleton is proposed combining time-delay estimation (TDE) based computed torque control (CTC) and robust adaptive RBF neural networks. In addition to the conventional advantages of the CTC, TDE technique is integrated to estimate unmodeled dynamics and external disturbance. To realize more accurate tracking, a robust adaptive RBF neural networks compensator is designed to approximate and compensate TDE error. The final asymptotic stability is guaranteed with Lyapunov criteria. To validate the proposed approach, co-simulation experiments are realized using SolidWorks, SimMechanics and MATLAB/Robotics Toolbox. Compared to CTC, sliding mode based CTC and TDE based CTC, the higher performances of the proposed controller are demonstrated by co-simulation.
•A TDE based CTC method is proposed with a robust adaptive RBF neural networks.•To enhance CTC method, TDE is used to compensate unknown dynamics and disturbance.•To reduce TDE error, a robust adaptive RBF neural networks compensator is designed.•The asymptotic stability of exoskeleton control is guaranteed with Lyapunov theory.•Compared to CTC, SMC/TDE-CTC, high performances of the proposed method are validated.</description><subject>12 DOF lower limb exoskeleton</subject><subject>Algorithms</subject><subject>Biomechanical Phenomena</subject><subject>Computed torque control</subject><subject>Computer Simulation</subject><subject>Equipment Design</subject><subject>Exoskeleton Device</subject><subject>Gait</subject><subject>Humans</subject><subject>Lower Extremity</subject><subject>Neural Networks, Computer</subject><subject>Rehabilitation - instrumentation</subject><subject>Robotics</subject><subject>Robotics toolbox</subject><subject>Robust adaptive RBF neural networks</subject><subject>Time-delay estimation</subject><subject>Torque</subject><issn>0019-0578</issn><issn>1879-2022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9Uctu3SAQRVWj5ubxB1XFshs7A35gbyq1UV5SpErR3SMMg8KNbW4BJ80f9LND4rTLLtBhxDlzmDmEfGZQMmDt2a50UaWgSg6sL0GUUMEHsmGd6AsOnH8kG8gvBTSiOyRHMe4AgDd994kcVqzqe97wDfmzdRMWBkf1TDEmN6nk_EwHFdFQ7af9kvIl-fBrwVzPKfiRPrl0T4MflpioMmqf3CPSux-XdMYlqDFDevLh4U2Pc_6lD9Tmo2jAezW40aXVBn_7-IAjJj-fkAOrxoin73hMtpcX2_Pr4vbn1c3599tCVy1PxWB4B8z2loPmummx1gPWvdKiFroSzApj29YKIdqBWWTQKtMb1TU1x2Zg1TH5urbdB59HiklOLmocRzWjX6LkXLCubutaZGq9UnXwMQa0ch_yfsKzZCBfI5A7uUYgXyOQIGSOIMu-vDssw4Tmn-jvzjPh20rAPOajwyCjdjhrNC6gTtJ493-HF8BmnbE</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Han, Shuaishuai</creator><creator>Wang, Haoping</creator><creator>Tian, Yang</creator><creator>Christov, Nicolai</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202002</creationdate><title>Time-delay estimation based computed torque control with robust adaptive RBF neural network compensator for a rehabilitation exoskeleton</title><author>Han, Shuaishuai ; Wang, Haoping ; Tian, Yang ; Christov, Nicolai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-bd2801f9f20c2c56e4cbe49ac747c371f7df66f7776b1fe106ad9da8542e5b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>12 DOF lower limb exoskeleton</topic><topic>Algorithms</topic><topic>Biomechanical Phenomena</topic><topic>Computed torque control</topic><topic>Computer Simulation</topic><topic>Equipment Design</topic><topic>Exoskeleton Device</topic><topic>Gait</topic><topic>Humans</topic><topic>Lower Extremity</topic><topic>Neural Networks, Computer</topic><topic>Rehabilitation - instrumentation</topic><topic>Robotics</topic><topic>Robotics toolbox</topic><topic>Robust adaptive RBF neural networks</topic><topic>Time-delay estimation</topic><topic>Torque</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Shuaishuai</creatorcontrib><creatorcontrib>Wang, Haoping</creatorcontrib><creatorcontrib>Tian, Yang</creatorcontrib><creatorcontrib>Christov, Nicolai</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ISA transactions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Shuaishuai</au><au>Wang, Haoping</au><au>Tian, Yang</au><au>Christov, Nicolai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-delay estimation based computed torque control with robust adaptive RBF neural network compensator for a rehabilitation exoskeleton</atitle><jtitle>ISA transactions</jtitle><addtitle>ISA Trans</addtitle><date>2020-02</date><risdate>2020</risdate><volume>97</volume><spage>171</spage><epage>181</epage><pages>171-181</pages><issn>0019-0578</issn><eissn>1879-2022</eissn><abstract>A new approach to gait rehabilitation task of a 12 DOF lower limb exoskeleton is proposed combining time-delay estimation (TDE) based computed torque control (CTC) and robust adaptive RBF neural networks. In addition to the conventional advantages of the CTC, TDE technique is integrated to estimate unmodeled dynamics and external disturbance. To realize more accurate tracking, a robust adaptive RBF neural networks compensator is designed to approximate and compensate TDE error. The final asymptotic stability is guaranteed with Lyapunov criteria. To validate the proposed approach, co-simulation experiments are realized using SolidWorks, SimMechanics and MATLAB/Robotics Toolbox. Compared to CTC, sliding mode based CTC and TDE based CTC, the higher performances of the proposed controller are demonstrated by co-simulation.
•A TDE based CTC method is proposed with a robust adaptive RBF neural networks.•To enhance CTC method, TDE is used to compensate unknown dynamics and disturbance.•To reduce TDE error, a robust adaptive RBF neural networks compensator is designed.•The asymptotic stability of exoskeleton control is guaranteed with Lyapunov theory.•Compared to CTC, SMC/TDE-CTC, high performances of the proposed method are validated.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>31399252</pmid><doi>10.1016/j.isatra.2019.07.030</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0019-0578 |
ispartof | ISA transactions, 2020-02, Vol.97, p.171-181 |
issn | 0019-0578 1879-2022 |
language | eng |
recordid | cdi_proquest_miscellaneous_2271846447 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | 12 DOF lower limb exoskeleton Algorithms Biomechanical Phenomena Computed torque control Computer Simulation Equipment Design Exoskeleton Device Gait Humans Lower Extremity Neural Networks, Computer Rehabilitation - instrumentation Robotics Robotics toolbox Robust adaptive RBF neural networks Time-delay estimation Torque |
title | Time-delay estimation based computed torque control with robust adaptive RBF neural network compensator for a rehabilitation exoskeleton |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A39%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-delay%20estimation%20based%20computed%20torque%20control%20with%20robust%20adaptive%20RBF%20neural%20network%20compensator%20for%20a%20rehabilitation%20exoskeleton&rft.jtitle=ISA%20transactions&rft.au=Han,%20Shuaishuai&rft.date=2020-02&rft.volume=97&rft.spage=171&rft.epage=181&rft.pages=171-181&rft.issn=0019-0578&rft.eissn=1879-2022&rft_id=info:doi/10.1016/j.isatra.2019.07.030&rft_dat=%3Cproquest_cross%3E2271846447%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2271846447&rft_id=info:pmid/31399252&rft_els_id=S0019057819303350&rfr_iscdi=true |