Improving biosynthesis of AuPd core-shell nanoparticles through Escherichia coli with the assistance of phytochelatin for catalytic enhanced chemiluminescence and benzyl alcohol oxidation

In this work, AuPd core-shell nanoparticles (NPs) biosynthesized through Arabidopsis thaliana phytochelatin synthase-modified Escherichia coli (Au-Pd/AtPCS1-E. coli) with catalytic enhanced chemiluminescence (CL) and benzyl alcohol oxidation (BAO) was investigated. Such biosynthesis of AuPd core-she...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of inorganic biochemistry 2019-10, Vol.199, p.110795-110795, Article 110795
Hauptverfasser: Zhang, Dingkun, Tang, Donglin, Yamamoto, Toshiyoshi, Kato, Yugo, Horiuchi, Shiho, Ogawa, Shinya, Yoshimura, Esturo, Suzuki, Michio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 110795
container_issue
container_start_page 110795
container_title Journal of inorganic biochemistry
container_volume 199
creator Zhang, Dingkun
Tang, Donglin
Yamamoto, Toshiyoshi
Kato, Yugo
Horiuchi, Shiho
Ogawa, Shinya
Yoshimura, Esturo
Suzuki, Michio
description In this work, AuPd core-shell nanoparticles (NPs) biosynthesized through Arabidopsis thaliana phytochelatin synthase-modified Escherichia coli (Au-Pd/AtPCS1-E. coli) with catalytic enhanced chemiluminescence (CL) and benzyl alcohol oxidation (BAO) was investigated. Such biosynthesis of AuPd core-shell NPs was obviously enhanced due to insertion of the gene sequence of Arabidopsis thaliana phytochelatin synthase (AtPCS1) to a plasmid vector (pET-28b) of Escherichia coli (E. coli). The obtained Arabidopsis thaliana phytochelatin synthase-modified Escherichia coli (AtPCS1-E. coli) could generate phytochelatins (PCs, (γ-Glu-Cys)n-Gly, n > 1) for efficient capture and enrichment of Au3+. The component and morphology of AuPd core-shell NPs were checked through X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM) and energy dispersive spectrometer (EDS). Catalytic CL (in H2O2-luminol system) and BAO (in H2O2-benzyl alcohol system) effect with different experimental conditions were examined, respectively. These results revealed that multifunctional PCs could effectively facilitate biosynthetic process of AuPd core-shell NPs with better distribution, higher yield and lower cost while stronger CL intensity and higher conversion could be obtained for further quantitative analysis and application. AuPd core-shell nanoparticles (NPs) biosynthesized through Arabidopsis thaliana phytochelatin synthase-modified Escherichia coli (Au-Pd/AtPCS1-E. coli) with catalytic enhanced chemiluminescence and benzyl alcohol oxidation was investigated. Results revealed that Arabidopsis thaliana phytochelatin synthase (AtPCS1) could effectively facilitate biosynthesis of AuPd core-shell NPs with higher yield and catalytic activity. [Display omitted] •We reported catalytic application by biosynthesized AuPd nanoparticles.•This biosynthetic technology has been an advanced research area.•Such biosynthesis is greatly enhanced due to phytochelatins.•The biosynthesized AuPd nanoparticles are also applied to catalysis.•The novelty of this biosynthetic strategy could provide an alternative.
doi_str_mv 10.1016/j.jinorgbio.2019.110795
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2271842463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0162013419303113</els_id><sourcerecordid>2271842463</sourcerecordid><originalsourceid>FETCH-LOGICAL-e1144-3b3f14b650fff28d64ef04c3feb3ca4427445cd13002707746a220c8089934043</originalsourceid><addsrcrecordid>eNo9kc9u1DAQhy0EotvCK4CPXLL4zyTZPa6qApUqwQHOluNM1l459mInhfBqvByOtuXkw3zzeWZ-hLznbMsZbz6eticXYjp2Lm4F4_st56zd1y_Ihu9aWUkJ8JJsCikqxiVckeucT4yxuob2NbmSHBhrGGzI3_vxnOKjC0daXHkJk8XsMo0DPczfempiwipb9J4GHeJZp8kZj5lONsX5aOldNhaTM9bpAntHf7nJlipSnYto0sHgajvbZYoF9XpygQ4xUaMn7ZeioxjsipXfLI7Oz6MLmA2unTr0tMPwZ_FUexNt9DT-dn2RxPCGvBq0z_j26b0hPz7dfb_9Uj18_Xx_e3iokHOASnZy4NA1NRuGQez6BnBgYOSAnTQaQLQAtem5ZEy0rG2h0UIws2O7_V4CA3lDPly85VI_Z8yTGl0Zz3sdMM5ZCdHyHQhoZEHfPaFzN2KvzsmNOi3q-eAFOFwALAM_OkwqG7du2ruEZlJ9dIoztYasTup_yGoNWV1Clv8AvfigvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2271842463</pqid></control><display><type>article</type><title>Improving biosynthesis of AuPd core-shell nanoparticles through Escherichia coli with the assistance of phytochelatin for catalytic enhanced chemiluminescence and benzyl alcohol oxidation</title><source>Elsevier ScienceDirect Journals</source><creator>Zhang, Dingkun ; Tang, Donglin ; Yamamoto, Toshiyoshi ; Kato, Yugo ; Horiuchi, Shiho ; Ogawa, Shinya ; Yoshimura, Esturo ; Suzuki, Michio</creator><creatorcontrib>Zhang, Dingkun ; Tang, Donglin ; Yamamoto, Toshiyoshi ; Kato, Yugo ; Horiuchi, Shiho ; Ogawa, Shinya ; Yoshimura, Esturo ; Suzuki, Michio</creatorcontrib><description>In this work, AuPd core-shell nanoparticles (NPs) biosynthesized through Arabidopsis thaliana phytochelatin synthase-modified Escherichia coli (Au-Pd/AtPCS1-E. coli) with catalytic enhanced chemiluminescence (CL) and benzyl alcohol oxidation (BAO) was investigated. Such biosynthesis of AuPd core-shell NPs was obviously enhanced due to insertion of the gene sequence of Arabidopsis thaliana phytochelatin synthase (AtPCS1) to a plasmid vector (pET-28b) of Escherichia coli (E. coli). The obtained Arabidopsis thaliana phytochelatin synthase-modified Escherichia coli (AtPCS1-E. coli) could generate phytochelatins (PCs, (γ-Glu-Cys)n-Gly, n &gt; 1) for efficient capture and enrichment of Au3+. The component and morphology of AuPd core-shell NPs were checked through X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM) and energy dispersive spectrometer (EDS). Catalytic CL (in H2O2-luminol system) and BAO (in H2O2-benzyl alcohol system) effect with different experimental conditions were examined, respectively. These results revealed that multifunctional PCs could effectively facilitate biosynthetic process of AuPd core-shell NPs with better distribution, higher yield and lower cost while stronger CL intensity and higher conversion could be obtained for further quantitative analysis and application. AuPd core-shell nanoparticles (NPs) biosynthesized through Arabidopsis thaliana phytochelatin synthase-modified Escherichia coli (Au-Pd/AtPCS1-E. coli) with catalytic enhanced chemiluminescence and benzyl alcohol oxidation was investigated. Results revealed that Arabidopsis thaliana phytochelatin synthase (AtPCS1) could effectively facilitate biosynthesis of AuPd core-shell NPs with higher yield and catalytic activity. [Display omitted] •We reported catalytic application by biosynthesized AuPd nanoparticles.•This biosynthetic technology has been an advanced research area.•Such biosynthesis is greatly enhanced due to phytochelatins.•The biosynthesized AuPd nanoparticles are also applied to catalysis.•The novelty of this biosynthetic strategy could provide an alternative.</description><identifier>ISSN: 0162-0134</identifier><identifier>EISSN: 1873-3344</identifier><identifier>DOI: 10.1016/j.jinorgbio.2019.110795</identifier><identifier>PMID: 31400604</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Au[sbnd]Pd core-shell nanoparticles ; Benzyl alcohol oxidation ; Biosynthesis ; Chemiluminescence ; Escherichia coli ; Phytochelatin</subject><ispartof>Journal of inorganic biochemistry, 2019-10, Vol.199, p.110795-110795, Article 110795</ispartof><rights>2019</rights><rights>Copyright © 2019. Published by Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0162013419303113$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31400604$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Dingkun</creatorcontrib><creatorcontrib>Tang, Donglin</creatorcontrib><creatorcontrib>Yamamoto, Toshiyoshi</creatorcontrib><creatorcontrib>Kato, Yugo</creatorcontrib><creatorcontrib>Horiuchi, Shiho</creatorcontrib><creatorcontrib>Ogawa, Shinya</creatorcontrib><creatorcontrib>Yoshimura, Esturo</creatorcontrib><creatorcontrib>Suzuki, Michio</creatorcontrib><title>Improving biosynthesis of AuPd core-shell nanoparticles through Escherichia coli with the assistance of phytochelatin for catalytic enhanced chemiluminescence and benzyl alcohol oxidation</title><title>Journal of inorganic biochemistry</title><addtitle>J Inorg Biochem</addtitle><description>In this work, AuPd core-shell nanoparticles (NPs) biosynthesized through Arabidopsis thaliana phytochelatin synthase-modified Escherichia coli (Au-Pd/AtPCS1-E. coli) with catalytic enhanced chemiluminescence (CL) and benzyl alcohol oxidation (BAO) was investigated. Such biosynthesis of AuPd core-shell NPs was obviously enhanced due to insertion of the gene sequence of Arabidopsis thaliana phytochelatin synthase (AtPCS1) to a plasmid vector (pET-28b) of Escherichia coli (E. coli). The obtained Arabidopsis thaliana phytochelatin synthase-modified Escherichia coli (AtPCS1-E. coli) could generate phytochelatins (PCs, (γ-Glu-Cys)n-Gly, n &gt; 1) for efficient capture and enrichment of Au3+. The component and morphology of AuPd core-shell NPs were checked through X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM) and energy dispersive spectrometer (EDS). Catalytic CL (in H2O2-luminol system) and BAO (in H2O2-benzyl alcohol system) effect with different experimental conditions were examined, respectively. These results revealed that multifunctional PCs could effectively facilitate biosynthetic process of AuPd core-shell NPs with better distribution, higher yield and lower cost while stronger CL intensity and higher conversion could be obtained for further quantitative analysis and application. AuPd core-shell nanoparticles (NPs) biosynthesized through Arabidopsis thaliana phytochelatin synthase-modified Escherichia coli (Au-Pd/AtPCS1-E. coli) with catalytic enhanced chemiluminescence and benzyl alcohol oxidation was investigated. Results revealed that Arabidopsis thaliana phytochelatin synthase (AtPCS1) could effectively facilitate biosynthesis of AuPd core-shell NPs with higher yield and catalytic activity. [Display omitted] •We reported catalytic application by biosynthesized AuPd nanoparticles.•This biosynthetic technology has been an advanced research area.•Such biosynthesis is greatly enhanced due to phytochelatins.•The biosynthesized AuPd nanoparticles are also applied to catalysis.•The novelty of this biosynthetic strategy could provide an alternative.</description><subject>Au[sbnd]Pd core-shell nanoparticles</subject><subject>Benzyl alcohol oxidation</subject><subject>Biosynthesis</subject><subject>Chemiluminescence</subject><subject>Escherichia coli</subject><subject>Phytochelatin</subject><issn>0162-0134</issn><issn>1873-3344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kc9u1DAQhy0EotvCK4CPXLL4zyTZPa6qApUqwQHOluNM1l459mInhfBqvByOtuXkw3zzeWZ-hLznbMsZbz6eticXYjp2Lm4F4_st56zd1y_Ihu9aWUkJ8JJsCikqxiVckeucT4yxuob2NbmSHBhrGGzI3_vxnOKjC0daXHkJk8XsMo0DPczfempiwipb9J4GHeJZp8kZj5lONsX5aOldNhaTM9bpAntHf7nJlipSnYto0sHgajvbZYoF9XpygQ4xUaMn7ZeioxjsipXfLI7Oz6MLmA2unTr0tMPwZ_FUexNt9DT-dn2RxPCGvBq0z_j26b0hPz7dfb_9Uj18_Xx_e3iokHOASnZy4NA1NRuGQez6BnBgYOSAnTQaQLQAtem5ZEy0rG2h0UIws2O7_V4CA3lDPly85VI_Z8yTGl0Zz3sdMM5ZCdHyHQhoZEHfPaFzN2KvzsmNOi3q-eAFOFwALAM_OkwqG7du2ruEZlJ9dIoztYasTup_yGoNWV1Clv8AvfigvA</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Zhang, Dingkun</creator><creator>Tang, Donglin</creator><creator>Yamamoto, Toshiyoshi</creator><creator>Kato, Yugo</creator><creator>Horiuchi, Shiho</creator><creator>Ogawa, Shinya</creator><creator>Yoshimura, Esturo</creator><creator>Suzuki, Michio</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>201910</creationdate><title>Improving biosynthesis of AuPd core-shell nanoparticles through Escherichia coli with the assistance of phytochelatin for catalytic enhanced chemiluminescence and benzyl alcohol oxidation</title><author>Zhang, Dingkun ; Tang, Donglin ; Yamamoto, Toshiyoshi ; Kato, Yugo ; Horiuchi, Shiho ; Ogawa, Shinya ; Yoshimura, Esturo ; Suzuki, Michio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e1144-3b3f14b650fff28d64ef04c3feb3ca4427445cd13002707746a220c8089934043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Au[sbnd]Pd core-shell nanoparticles</topic><topic>Benzyl alcohol oxidation</topic><topic>Biosynthesis</topic><topic>Chemiluminescence</topic><topic>Escherichia coli</topic><topic>Phytochelatin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Dingkun</creatorcontrib><creatorcontrib>Tang, Donglin</creatorcontrib><creatorcontrib>Yamamoto, Toshiyoshi</creatorcontrib><creatorcontrib>Kato, Yugo</creatorcontrib><creatorcontrib>Horiuchi, Shiho</creatorcontrib><creatorcontrib>Ogawa, Shinya</creatorcontrib><creatorcontrib>Yoshimura, Esturo</creatorcontrib><creatorcontrib>Suzuki, Michio</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of inorganic biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Dingkun</au><au>Tang, Donglin</au><au>Yamamoto, Toshiyoshi</au><au>Kato, Yugo</au><au>Horiuchi, Shiho</au><au>Ogawa, Shinya</au><au>Yoshimura, Esturo</au><au>Suzuki, Michio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving biosynthesis of AuPd core-shell nanoparticles through Escherichia coli with the assistance of phytochelatin for catalytic enhanced chemiluminescence and benzyl alcohol oxidation</atitle><jtitle>Journal of inorganic biochemistry</jtitle><addtitle>J Inorg Biochem</addtitle><date>2019-10</date><risdate>2019</risdate><volume>199</volume><spage>110795</spage><epage>110795</epage><pages>110795-110795</pages><artnum>110795</artnum><issn>0162-0134</issn><eissn>1873-3344</eissn><abstract>In this work, AuPd core-shell nanoparticles (NPs) biosynthesized through Arabidopsis thaliana phytochelatin synthase-modified Escherichia coli (Au-Pd/AtPCS1-E. coli) with catalytic enhanced chemiluminescence (CL) and benzyl alcohol oxidation (BAO) was investigated. Such biosynthesis of AuPd core-shell NPs was obviously enhanced due to insertion of the gene sequence of Arabidopsis thaliana phytochelatin synthase (AtPCS1) to a plasmid vector (pET-28b) of Escherichia coli (E. coli). The obtained Arabidopsis thaliana phytochelatin synthase-modified Escherichia coli (AtPCS1-E. coli) could generate phytochelatins (PCs, (γ-Glu-Cys)n-Gly, n &gt; 1) for efficient capture and enrichment of Au3+. The component and morphology of AuPd core-shell NPs were checked through X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM) and energy dispersive spectrometer (EDS). Catalytic CL (in H2O2-luminol system) and BAO (in H2O2-benzyl alcohol system) effect with different experimental conditions were examined, respectively. These results revealed that multifunctional PCs could effectively facilitate biosynthetic process of AuPd core-shell NPs with better distribution, higher yield and lower cost while stronger CL intensity and higher conversion could be obtained for further quantitative analysis and application. AuPd core-shell nanoparticles (NPs) biosynthesized through Arabidopsis thaliana phytochelatin synthase-modified Escherichia coli (Au-Pd/AtPCS1-E. coli) with catalytic enhanced chemiluminescence and benzyl alcohol oxidation was investigated. Results revealed that Arabidopsis thaliana phytochelatin synthase (AtPCS1) could effectively facilitate biosynthesis of AuPd core-shell NPs with higher yield and catalytic activity. [Display omitted] •We reported catalytic application by biosynthesized AuPd nanoparticles.•This biosynthetic technology has been an advanced research area.•Such biosynthesis is greatly enhanced due to phytochelatins.•The biosynthesized AuPd nanoparticles are also applied to catalysis.•The novelty of this biosynthetic strategy could provide an alternative.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31400604</pmid><doi>10.1016/j.jinorgbio.2019.110795</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0162-0134
ispartof Journal of inorganic biochemistry, 2019-10, Vol.199, p.110795-110795, Article 110795
issn 0162-0134
1873-3344
language eng
recordid cdi_proquest_miscellaneous_2271842463
source Elsevier ScienceDirect Journals
subjects Au[sbnd]Pd core-shell nanoparticles
Benzyl alcohol oxidation
Biosynthesis
Chemiluminescence
Escherichia coli
Phytochelatin
title Improving biosynthesis of AuPd core-shell nanoparticles through Escherichia coli with the assistance of phytochelatin for catalytic enhanced chemiluminescence and benzyl alcohol oxidation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T03%3A30%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20biosynthesis%20of%20AuPd%20core-shell%20nanoparticles%20through%20Escherichia%20coli%20with%20the%20assistance%20of%20phytochelatin%20for%20catalytic%20enhanced%20chemiluminescence%20and%20benzyl%20alcohol%20oxidation&rft.jtitle=Journal%20of%20inorganic%20biochemistry&rft.au=Zhang,%20Dingkun&rft.date=2019-10&rft.volume=199&rft.spage=110795&rft.epage=110795&rft.pages=110795-110795&rft.artnum=110795&rft.issn=0162-0134&rft.eissn=1873-3344&rft_id=info:doi/10.1016/j.jinorgbio.2019.110795&rft_dat=%3Cproquest_pubme%3E2271842463%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2271842463&rft_id=info:pmid/31400604&rft_els_id=S0162013419303113&rfr_iscdi=true