A stable difference scheme for the solution of hyperbolic equations using the method of lines

A new differencing scheme is proposed for the solution of hyperbolic partial differential equations by the method of lines. The accuracy of the scheme is shown to be between first and second order while the instability associated with the use of centered second-order differences is avoided. The meth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 1976-01, Vol.22 (3), p.377-388
Hauptverfasser: Heydweiller, J.C, Sincovec, R.F
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 388
container_issue 3
container_start_page 377
container_title Journal of computational physics
container_volume 22
creator Heydweiller, J.C
Sincovec, R.F
description A new differencing scheme is proposed for the solution of hyperbolic partial differential equations by the method of lines. The accuracy of the scheme is shown to be between first and second order while the instability associated with the use of centered second-order differences is avoided. The method is successfully demonstrated on problems which have smooth solutions.
doi_str_mv 10.1016/0021-9991(76)90055-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_22715521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0021999176900553</els_id><sourcerecordid>22715521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-ba7187343245310690cafbec9683e098791cf54968fd188cc8167ce27686aebb3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Aw85iR6qSdPm4yIsi1-w4EWPEtJ0YiPdZjdphf33trvi0dPwDs87MA9Cl5TcUkL5HSE5zZRS9FrwG0VIWWbsCM0oUSTLBeXHaPaHnKKzlL4IIbIs5Ax9LHDqTdUCrr1zEKGzgJNtYA3YhYj7ZoyhHXofOhwcbnYbiFVovcWwHcy0TnhIvvvco2vom1BPYOs7SOfoxJk2wcXvnKP3x4e35XO2en16WS5WmWVM9FllBJWCFSwvSkYJV8QaV4FVXDIgSgpFrSuLMbqaSmmtpFxYyAWX3EBVsTm6OtzdxLAdIPV67ZOFtjUdhCHpfLRQljkdweIA2hhSiuD0Jvq1iTtNiZ5c6kmUnkRpwfXepWZj7f5Qg_GJbw9RJ-snVbWPYHtdB___gR_ICntL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>22715521</pqid></control><display><type>article</type><title>A stable difference scheme for the solution of hyperbolic equations using the method of lines</title><source>Elsevier ScienceDirect Journals</source><creator>Heydweiller, J.C ; Sincovec, R.F</creator><creatorcontrib>Heydweiller, J.C ; Sincovec, R.F</creatorcontrib><description>A new differencing scheme is proposed for the solution of hyperbolic partial differential equations by the method of lines. The accuracy of the scheme is shown to be between first and second order while the instability associated with the use of centered second-order differences is avoided. The method is successfully demonstrated on problems which have smooth solutions.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/0021-9991(76)90055-3</identifier><language>eng</language><publisher>Elsevier Inc</publisher><ispartof>Journal of computational physics, 1976-01, Vol.22 (3), p.377-388</ispartof><rights>1976</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-ba7187343245310690cafbec9683e098791cf54968fd188cc8167ce27686aebb3</citedby><cites>FETCH-LOGICAL-c337t-ba7187343245310690cafbec9683e098791cf54968fd188cc8167ce27686aebb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/0021999176900553$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Heydweiller, J.C</creatorcontrib><creatorcontrib>Sincovec, R.F</creatorcontrib><title>A stable difference scheme for the solution of hyperbolic equations using the method of lines</title><title>Journal of computational physics</title><description>A new differencing scheme is proposed for the solution of hyperbolic partial differential equations by the method of lines. The accuracy of the scheme is shown to be between first and second order while the instability associated with the use of centered second-order differences is avoided. The method is successfully demonstrated on problems which have smooth solutions.</description><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1976</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-Aw85iR6qSdPm4yIsi1-w4EWPEtJ0YiPdZjdphf33trvi0dPwDs87MA9Cl5TcUkL5HSE5zZRS9FrwG0VIWWbsCM0oUSTLBeXHaPaHnKKzlL4IIbIs5Ax9LHDqTdUCrr1zEKGzgJNtYA3YhYj7ZoyhHXofOhwcbnYbiFVovcWwHcy0TnhIvvvco2vom1BPYOs7SOfoxJk2wcXvnKP3x4e35XO2en16WS5WmWVM9FllBJWCFSwvSkYJV8QaV4FVXDIgSgpFrSuLMbqaSmmtpFxYyAWX3EBVsTm6OtzdxLAdIPV67ZOFtjUdhCHpfLRQljkdweIA2hhSiuD0Jvq1iTtNiZ5c6kmUnkRpwfXepWZj7f5Qg_GJbw9RJ-snVbWPYHtdB___gR_ICntL</recordid><startdate>19760101</startdate><enddate>19760101</enddate><creator>Heydweiller, J.C</creator><creator>Sincovec, R.F</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19760101</creationdate><title>A stable difference scheme for the solution of hyperbolic equations using the method of lines</title><author>Heydweiller, J.C ; Sincovec, R.F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-ba7187343245310690cafbec9683e098791cf54968fd188cc8167ce27686aebb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1976</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heydweiller, J.C</creatorcontrib><creatorcontrib>Sincovec, R.F</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heydweiller, J.C</au><au>Sincovec, R.F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A stable difference scheme for the solution of hyperbolic equations using the method of lines</atitle><jtitle>Journal of computational physics</jtitle><date>1976-01-01</date><risdate>1976</risdate><volume>22</volume><issue>3</issue><spage>377</spage><epage>388</epage><pages>377-388</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>A new differencing scheme is proposed for the solution of hyperbolic partial differential equations by the method of lines. The accuracy of the scheme is shown to be between first and second order while the instability associated with the use of centered second-order differences is avoided. The method is successfully demonstrated on problems which have smooth solutions.</abstract><pub>Elsevier Inc</pub><doi>10.1016/0021-9991(76)90055-3</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 1976-01, Vol.22 (3), p.377-388
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_22715521
source Elsevier ScienceDirect Journals
title A stable difference scheme for the solution of hyperbolic equations using the method of lines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T05%3A20%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20stable%20difference%20scheme%20for%20the%20solution%20of%20hyperbolic%20equations%20using%20the%20method%20of%20lines&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Heydweiller,%20J.C&rft.date=1976-01-01&rft.volume=22&rft.issue=3&rft.spage=377&rft.epage=388&rft.pages=377-388&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/0021-9991(76)90055-3&rft_dat=%3Cproquest_cross%3E22715521%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=22715521&rft_id=info:pmid/&rft_els_id=0021999176900553&rfr_iscdi=true